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1 Result
We have following identities for any k,n > 1 where the empty product is 1.
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In g-Pochhammer symbols, it is equivalent to
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2 Combinatorial approach

At first, let A be the set of all integer partition A with Ay > Ay > ---
A be the conjugate of A which is A, = #{j | A; > i}, and s(\) =
A s()\). For any integer partition A, define (%) as

A(dr) — Am 1 ifm<d
moT ) A otherwise
and
)\(’L]) . )\iJ’,mfl if m S j —1 + 1
10 otherwise
>

so we have A(#9) ig \; > ... Aj > 0> ---. Then, define

At ={NEA | Mo =1t}
Apei =N EA| N < 1)
Ak‘:Zt:{)\eA|)\k2t}

Then, for any A C A, we may define the generating function P(A) as

P(A)(x) =Y a*™ = "#{Ae A] s(\) = n}a"

AEA n=0

naturally. The following is well-known.

Lemma 1. For any I C N, if we define A; = {A € A | \; € I if \; # 0}, then

P =Il5—

i€l

Note that Aj.<s = A12,... s} since integer partitions are monotone decreas-
ing sequences, so we have

Corollary 2.

(i) For any s > 1,

(ii) For A, we have

P(A)(2) =]]

=1

1
- =: P
1—x ()

where we define Py(x) = 1.

Also, we have simple well-known property of the conjugation.



Lemma 3. The conjugation is a s-preserving bijection from Ag.>, to Ay,.>y for
every k,n > 1.

Proof. Note that \; = #{j | \; > i} = >_72, 1),>i. Then, we have

o0 o] o0 o0 o0 o0
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since \;’s are nonnegative integers, which proves s(\) = s()\’). Hence, conju-

gating is a s-preserving operation.

Now, since A is a decreaing sequence, so A > n implies \; > -+ > A\ > n,
so {L,---,k} € {j | A\j > n} which proves X, > k. Hence, the conjugation is
a map from Ag.>p to Ay.>i. Also, if Ay < n, then it implies {j | A; > n} C
{1,2,-+- ,k =1} so A}, < k. Thus, A, > k is actually equivalent to A\, > n.
Then, it gives

N N2 Y = A 2 0 =
which proves A = \, so the conjugation is a bijection. O

Then, it will conclude A < n — 1 is equivalent to A,, < k — 1 also. Now, we
can find out the generating function of Ay.;.

Theorem 4. For k > 1 and ¢t > 0, we have
P(Ag)(x) = & Py (z) Py ()

Proof. We will construct the bijection ¢ : Ag.y — Aj.<x—1 X Aj.<4 such that if
d(A) = (u,v), then s(A) = s(p) + s(v) + kt. From this, we will get

Z 25N = Z 2507 ()

AEAK:t MEA . <k—1,VEN1.<¢

Z Z 25 +s(v)+kt

REAL <k—1 VEAL <4

(L‘kt Z xs(p,) Z xs(u)

HEAL<k—1 vEAL. <t

= M Py (2)Py(z)

which completes the proof.
First, if A\, = ¢, then we have Ay > Ao > --- > X 1 > A\ =, s0

o= ()\(1;1%1))(1@71,4) =N —t> > Ao —t>0---

is well-defined integer partition. Note that if K = 1, then p is the zero partition.
Moreover, py = 0 so we have pj < k—1. Thus, p’ € Aj.<kx—1. Now, t = A\, >
A1 > -+, so v = A1) € Ay Hence, the map

¢()‘) _ (,u/,l/) _ ((A(l:kfl))(kfl,ft)/’ /\(k+1:oo))



is well-defined map from Ay, to Aj.<x—1 X A1.<¢. Naturally, s(u') = s(p) =
s(AEF=DY —¢(k — 1) and s(v) = s(AF+1:>)) Thus, we have

( ) ()\(lk 1) )“l‘)\k +S(>\(k+1:oo))
=s(u)+tk—1)+t+s(v)
(e

)+ s(v) + kt

S

whenever ¢p(\) = (i, ). Hence, it is enough to prove that ¢ is bijective. Injec-

tivity is natural since \(1F=1) = (1k=1) apq \(k+1:00) — g (k+1:00) ymplies X = &

since Ay = Ky = t. For surjectivity, you may note that ¢(p) +¢ > pb+t>--- >

We_1+t>t>1v1 > w9 >0 ) = (p,v) for any given p € Aj.<p—q and v € Aq.<y.
We can understand this proof visually.

The yellow area denotes A\, = t. X denotes the position which will never be
the cell of the young diagram of integer partition A with Ay = ¢. The blue
area is corresponding to p, where X makes pf < k—1so ' € Aj.<p—1, so it
corresponding to Pj,_ for the generating function. The red area is corresponding
to v € Aj.<¢, so it corresponding to P; for the generating function. Lastly, the
number of green and yellow cell is exactly kt, which makes 2** in the generating
function. O

Now, we can prove equation , and . For convinience, define
~ox
Pen=1]] _— gk p,

1—x
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Theorem 5. The following identities are true.

(i)

(iii)




Proof. (i) First, Ap.x = Ap:>k \ An:>ky1. Hence, by Lemma , we have
P(Ani) = P(An:>k) — P(Ap:sk+1) = P(Aki>n) — P(Akg1:>n)

which gives

P, P, = katpk P — ka+1 tp.p,

t=n t=n
=> M1 —ab)Pp =) a*VIPP,
t=n t=n
=> M1 -2k —a" )PP
t=n
Hence,
" Py = 2" Py ZZxkt(l—mk—x Z (1—a* — 2" Py
= t=n
Thus, we have
2k = 1 i(l — 2P — 2Py,
k,n—1 —n ’
- Py
= 1—zF — 2t :
Z( )Pk,nfl

o0

s
—Zl—x -z Hl—xs

(i) From Lemma [Bl, we have P(A,.>x) = P(Aj.>n). Hence,

oo oo
> a/"Py Py =Y PP
j=k t=n

Divide both side by gkn—k=np P, 4, then we get
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k n,J
X Z%Pmk* Zx(’“ l)nPk 1
kt
Py
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Thus,

5 (i) 5 (i1,

t=n \s=n

(iii) Since A = J;= Ak:¢, we have

o0
> aM PP = Py
t=0

Hence,
= xk = Py ad 1
;SZI_[I 1—as :;Pk’t - Py :Eklf:ﬂm

To prove (), we need one more bijection, which is from [I].

Lemma 6. Suppose di(m) = {d | d > k,d | m} and p(n) = [2"]|Px(z) =
#{A € A| AF n}. Then,

Z A = Z p(n —m)dk(m)
AbFn m=1

Proof. For any triple (A, d,r) such that A is an integer paritition with A F n,
d >k, r > 1, and A%~ is again an integer partition, define ¥(\,d,r) =
(dr, \(4=7) d), which is a bijective to the set of triples (m, #,d) such that m >
1, k is an integer partition with kK - n —m, d > k, and d divides m since
(m, k,d) — (k{*™/® d m/d) is the inverse map.

For fixed A F n and d > k, the number of triple (A, d,r) is Aqg — A\gy1 since
A=) ig an integer paritition if and only if Ay — 7 > Ag+1. Hence, the number
of triples (A, d,r) for fixed X is > 2, (Ag — Ag41) = A and thus, the number of
triples (A, d, ) is Y, Ak. Now, for fixed m > 1, the number of triples (m, , d)
is p(n — m)di(m), so we get

S a =3 pn— m)d(m)
AFn m=1

O

Also, we can get the generating function of di, which is defined as Dy (x) =
Yoo di(n)a™, easily.

Lemma 7. For any k£ > 1,

0 d

AER

d=k



Proof. Easily,

Then, we are ready to prove

Theorem 8. The following identity is true

<ﬁ1—1x> il—'az] :itﬂl—af

i=k t=1 s=1

Proof. From above lemmas, we get

>N Ma™ = Dy(a) Po(x)

n=1AFn
Note that >y, Ak = ooy tH#{AFn | Ay =t}, so

izm ZZt#{Man_t}x

n=1 A\kn n=1t=1

Thus,

which is given identity.



3 Algebraic approach

In this section, we will prove given identity algebraically.

Theorem 9. The following identities are true.

o t .’L‘k
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<3 (M%) -3 (025

t=n \s=n

Proof. (i) By computation,
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Then, for j > k, we have
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T
-2 =11
111 1—as
t=n i=k s=n
Thus, we get
j k—1 t
> l‘k n > T
DI H =a"> 11
— - 1—as 1—x
j=ki=k t=n =%k =n t=n s=n

To prove , we have to define some special polynomials.

Definition 10. For any k£ > 1,m > 0, define
Qk+1,m($) = ka(:z:)(l - xk) + k=1 (m+1)

with
Qim(z)=0
and
k—1
Nim(z) = [ (1= 2%) + 2™ Qrm ()
1=1

Lemma 11. Polynomials @ and N have following properties.

(i)
Nit1,m(z) = Nigm (2)(1 — xk) 4 ghm+D)

Nimi1(2) = Ne(@)(1 = 27 4+ 254D

3

Proof. (i) By definition,
k

Nitim(@) = [J(1 = 2') + 2™ Q1 m(2)

i=1



_ (1 _ l’k)Nk,m(l‘) + xk(m-&-l)
O

(ii) We will use mathematical induction. First, from Q1 ,(x) = 0, we have
Ny m(z) = 1. Hence, it is true when k& = 1. Now, assume it is true for k.
Then,

Niy1ms1(2) = Neggmyr(z)(1 — 2 ) + ghm+2)
= N (@) (1 — 2™ )1 — 2F) 4 2 HD (1 = gk 4 ghmt2)
= Nk,m( )(1— )( ,xm+1) +xk(m+1)
- (Nk””(m)(l —a*) + xk(mﬂ)) (1 — g™y 4 g k+D0m+D)
= Npp1 () (1 — 2mF1) 4 gk+Dm+1)

by (i). Thus, done. -

(iii) We have N; o(z) = 1. Now, if we have Ny o(x) = 1, then by (i), we have
Ni+1,0(x) =1, so is done by mathematical induction. O

(iv) From (iii), it is true when m = 0. Now, if it is true for m, then

[y

SO Nl e
ardrl Al [T= (1 =) H:Zrll(l — %)
~ Nim()(1— 2™ + gh(m+1)
- m+1
T2 (1 —a)
_ Ni,m+1(2)
I (1 —a)
Thus, done by mathematical induction. O

Then, it gives (3] and .

Theorem 12. The following identities are true.
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. . t k N, .
Proof. (i) By previous lemma, we have )" ([]._; %7 = 7= ’z’l’iws). Since

s=1
N(k,m)(z) = Hf;ll(l — %) + 2™ Q. m(x), when we consider limit, we

have limy, oo N (k,m)(z) = [T5=, (1 — *). Thus, we have
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O
(i) Now, by (@) and (i),
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