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Abstract

In this paper, we will provide a method to compute the density of tautologies
among the set of well-formed formulae consisting of m variables, the negation
symbol and the implication symbol; which has a possibility to be applied for other
logical systems. This paper contains computational numerical values of the density
of tautologies for two, three, and four variable cases. Also, for certain quadratic
systems, we will build a theory of the s-cut concept to make a memory-time trade-
off when we compute the ratio by brute-force counting, and discover a fundamental
relation between generating functions’ values on the singularity point and ratios of
coefficients, which can be understood as another interpretation of the Szegő lemma
for such quadratic systems. With this relation, we will provide an asymptotic lower
bound m−1 − (7/4)m−3/2 + O(m−2) of the density of tautologies in the logic
system with m variables, the negation, and the implication, as m goes to the infin-
ity.

1 Introduction
Propositional logic is one of the most basic theories of mathematics, and tautology is
one of the most important concepts of it. In certain propositional logic systems, the
set of tautologies and the set of theorems are equal, so understanding proofs is strongly
related to understanding tautologies. For example, in the Hilbert deduction system with
logical symbols ¬ (negation) and → (implication); an inference rule modus ponens,
which means ϕ→ ψ and ϕ proves ψ; if we take axiom schemes as

• ϕ→ [ψ → ϕ],

• [ϕ→ [ψ → ξ]] → [[ϕ→ ψ] → [ϕ→ ξ]],

• [¬ψ → ¬ϕ] → [ϕ→ ψ],

the given propositional logic system is well-known to be sound, which means every
theorem is a tautology, and complete, which means every tautology is a theorem. This
kind of complete propositional logic systems are widely accepted as a logical base for
modern mathematics. Here, first two axiom schemes are equivalent to the deduction
theorem: under fixed assumptions, ϕ proves ψ if and only if ϕ → ψ is provable.
Moreover, by the Curry-Howard correspondence, ϕ → [ψ → ϕ] corresponds to the K
combinator Kxy = x and [ϕ→ [ψ → ξ]] → [[ϕ→ ψ] → [ϕ→ ξ]] corresponds to the
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S combinator Sxyz = xz(yz) where those S, K combinators are considered as one of
the simplest Turing complete language.

So we have some possibility that tautologies and theorems are equivalent, but in-
deed, their structures are quite different. For example, the truth value of a well-formed
formula in a propositional logic system is completely determined by its subformulae
and truth tables of logical operators, so a decision algorithm for tautologies is simply
constructible and being a tautolgy is universal for most logic systems where a given
formula is valid. But provability cannot be determined by its subformulae, so it is hard
to design a decision algorithm for theorems and being a theorem completely depends
on which logic system is considered for. Hence, if we want to generate randomized
proofs as a first step of AI-based proof, it is helpful to understand the proportion of the-
orems clearly, and we can replace it to the proportion of tautologies, which is simpler,
in such complete propositional logic systems.

Also, even though the structure of tautologies is simpler, we still have several in-
teresting questions about tautology itself, not only related to the theorem. 3-SAT prob-
lem is one of the example that can be understood as a tautology decision problem,
since satisfiability is equivalent to non-tautology-ness of its negation. For example,
(x∨y∨z)∧ (x∨y∨¬z) is satisfiable if and only if (¬x∧¬y∧¬z)∨ (¬x∧¬y∧z) is
not a tautology. Hence, understanding tautologies is strongly related to understanding
the satisfiability.

Therefore, there exist some preceding studies such as [15], which computes the
density of tautologies in the logic system with implication and negation on one vari-
able, [8], which computes the asymptotic density, as the number of variables goes to in-
finity, of tautologies in the logic system with implication and negative literals, and [1],
which computes the densities in several logic systems based on one variable, etc. Here,
the density means the limit probability of tautologies among fixed length well-formed
formulae where the length goes to the infinity.

Among those studies, many of them such as [3, 4, 6–11, 13, 14], focus on logic
systems without ¬, where this negation symbol makes structure complicate since it
is a unary operator, so it changes Catalan-like structure to Motzkin-like structure like
in [2, 12]. [15] and [1] are studies cover the ¬ symbol, but they only focus on the one
variable case.

Hence, this paper will cover propositional logic systems with the negation and mul-
tivariables. Results mainly consider the system with the negation and the implication
to focus on the Hilbert deduction system, but methods can be easily applicable to other
logic systems such as one contains the ‘and’ or the ‘or’, etc. Section 2 is for basic
definitions about propositional logic systems. This section covers the reason why the
density exists, and how to construct the system of quadratic equations of generating
functions properly to represent tautologies.

Section 3 will provide a divide and conquer method to solve the given system of
equations exactly by introducing well-organized partitions, and an algorithm computes
the density of tautologies in the logic system with m variable. Well-organized partition
is a coset-like object for set operators, and it will give a proper way to cluster the system
of equations hierarchically. As a result, we can compute the density of tautologies by
solving quadratic equations repeatedly, and hence, the density will be a constructible
number.

Section 4 will provide an analytic approach to general systems of quadratic equa-
tions to make a memory-time trade-off to estimate the limit ratio of coefficients. We
will construct and develop a theory of the ‘s-cut’ concept which gives a heuristic
method to compute an approximation. There is still some remaining problems to com-
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plete the theory rigorously, but we can observe that it gives practically improved results
with same amount of informations.

Section 5 will analyze the asymptotic behavior of the density of tautologies. For
the propositional logic system with the negation, the implication, and m variables, the
density of tautologies have asymptotic lower bound m−1 − (7/4)m−3/2 + O(m−2).
Also, this section includes some reasonable evidences to conjecture this lower bound
m−1 is actually tight asymptotic behavior.

2 Basic Definitions
A propositional logic system consists of a set of variables X and logical operators,
such as ¬ (negation), → (implication), ∧ (conjunction), ∨ (disjunction), | (NAND),
etc. Here, ¬ is a unary operator, and others are binary operators. These operators re-
cursively define well-formed formulae. Also, each operator has its own truth table, and
these truth tables recursively extend each truth assignment v : X → {T (true) , F (false) }
to the truth valuation of well-formed formulae. In other words, the valuation Jϕ; vK is
well-defined for any well-formed formula ϕ and truth assignment v. Moreover, we can
give values as T = 1, F = 0, so algebraic expressions such as J¬ϕ; vK = 1 − Jϕ; vK
and Jϕ→ ψ; vK = 1− Jϕ; vK(1− Jψ; vK) are allowed for convenience.

Now, let VA be the set of truth assignments, W be the set of well-formed formulae.
Then, for any ϕ ∈ W , let the falsity set Fϕ = {v ∈ VA | Jϕ; vK = F} and for any
v ∈ VA, let the set of false formulae as F v = {ϕ ∈ W | Jϕ; vK = F}. Similarly,
we define Tϕ and T v . These F•, T• convert a logical operator to a set operator. For
example, Fϕ→ψ = Fψ \ Fϕ.

Here, since the valuation only relies on truth tables, a logical operator is actually
well-defined on P(VA) as a set operator. For example, we may defineA→ B := B\A
so we have Fϕ→ψ = Fϕ → Fψ . It is remarkable that in this definition using F•,
A ∨ B = A ∩ B and A ∧ B = A ∪ B. Lastly, for a well-formed formula ϕ, let X[ϕ]
be the set of variables occur in ϕ and A[ϕ] = A ∩X[ϕ] for any A ⊆ X . Then, for two
truth assignments u, v, if u|X[ϕ] = v|X[ϕ], it implies Jϕ;uK = Jϕ; vK.

If every variable is free, then there exists a natural bijection between truth assign-
ments and subsets of variables. In particular, a truth assignment v corresponds to the
set {x ∈ X | v(x) = T}. In other words, we may assume VA = P(X). Also, even we
admit some limited variables such as negative literals, ⊥ (false connective), or ⊤ (true
connective), we still have natural correspondence between possible truth assignments
and feasible subsets of variables. For example, suppose A ⊆ X is a feasible subset of
variables. If we have the negative literal x for a variable x, then we have a condition
|A ∩ {x, x}| = 1. For the ⊥, ⊥ ̸∈ A and for the ⊤, ⊤ ∈ A. Hence, Jϕ;AK is also valid
for appropriate A ⊆ X . Especially, for the case that every variable is free, we have
Jϕ;AK = Jϕ;A[ϕ]K.

We have two important categories of well-formed formulae: tautologies and antilo-
gies. A tautology is a well-formed formula which is true for every valuations, and an
antilogy is a well-formed formula which is false for every valuations. In other words,
a well-formed formula ϕ is a tautology if and only if Fϕ = ∅, which is equivalent
to ϕ ∈ ∩v∈VAT

v , and an antilogy if and only if Fϕ = VA, which is equivalent to
ϕ ∈ ∩v∈VAF

v .
Now, for any well-formed formula ϕ, we define its length ℓ(ϕ) as usual: the number

of all letters used in it except parentheses, which is used only for preventing ambiguity
of the infix notation. Also, if every logical operator is a binary operator, then the length
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ℓ is always odd, so it is natural to use the reduced length ℓ2(ϕ) =
ℓ(ϕ)+1

2 since it gives
consecutive values. With the proper choice of a consecutive length from ℓ and ℓ2, we
have the following.

Lemma 2.1. If a propositional logic system have the implication → or an equivalent
expression with fixed length such as ¬ϕ ∨ ψ, then we have a constant N such that for
any n ≥ N , there exists a tautology of length n.

Proof. Note that for any variable p and well-formed formula ϕ, p → [ϕ → p] is a
tautology. Since ℓ(p → [ϕ → p]) = ℓ(ϕ) + 4 and ℓ2(p → [ϕ → p]) = ℓ2(ϕ) + 2; and
we use the consecutive length, so is done.

Now, we will count the number of well-formed formulae, and hence, we need to
consider only finite variables to get meaningful result. Let W (z) be the generating
function of well-formed formulae made by ℓ, i.e., W (z) =

∑
ϕ∈W zℓ(ϕ). Then, we

have

W (z) = |X|z + (the number of unary operators)zW (z)

+ (the number of binary operators)zW (z)2.

Also, for the case without unary operator and using ℓ2, we have

W2(z) = |X|z + (the number of binary operators)W2(z)
2.

Here, this equation for W2 actually does not determine W2 uniquely, so we need
an additional condition W2(0) = 0. In other words, it is natural to consider W̃2(z) =
W2(z)
z which satisfies

W̃2(z) = |X|+ (the number of binary operators)zW̃2(z)
2.

From now on, we will mainly focus on the specific propositional logic system, with
m variables X = {x0, x1, · · · , xm−1}, ¬, and →. Since W (z) = mz + zW (z) +
zW (z)2, we have

W (z) =
1− z −

√
(1− (1 + 2

√
m)z)(1− (1− 2

√
m)z)

2z
.

Before we compute the density of tautologies, we first consider the following lemma.

Lemma 2.2. Suppose an, bn are positive sequences,
∑∞
n=0 bn = ∞ and limn→∞

an
bn

=
r. Then,

lim
n→∞

∑n
k=0 ak∑n
k=0 bk

= r.

Hence, we have

lim
n→∞

Number of tautolgies with length at most n
Number of well-formed formulae with length at most n

= lim
n→∞

Number of tautolgies with length n
Number of well-formed formulae with length n

,

if the later one exists. Thus, we will compute the later one as done in [1] and [15], and
call it as the density of tautologies.
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Now, to compute the density, we will consider the generating function of tautolo-
gies. For any A ⊆ VA, let

WA(z) =
∑

ϕ∈W,Fϕ=A

zℓ(ϕ).

Hence, W∅(z) is the generating function of tautologies. These generating functions
form a following system of equations.

• If A = Fxi = P(X \ {xi}) for some xi ∈ X , then

WA(z) = z+zW¬A(z)+
∑

B→C=A

zWB(z)WC(z) = z+zWAc(z)+
∑

C\B=A

zWB(z)WC(z)

• Otherwise,

WA(z) = zW¬A(z)+
∑

B→C=A

zWB(z)WC(z) = zWAc(z)+
∑

C\B=A

zWB(z)WC(z).

For this system of equations, Drmota-Lalley-Woods theorem ( [5], pp. 489) ensure
the existence of the ratio limn→∞

[zn]W∅(z)
[zn]W (z) .

Theorem 2.3 (Drmota-Lalley-Woods theorem). If a nonlinear polynomial system, which
means n equations for y1(z), · · · , yn(z) of the form yi = fi(y1, · · · , yn) where fi’s
are polynomials, satisfies the following:

• The system uniquely determines the formal power series solution y1(z). y2(z),
· · · , yn(z) and that solution has no negative coefficients.

• The dependency graph of the system is strongly connected. Here, the depen-
dency graph is a directed graph among yi’s where arcs represent appearances
in equations.

• For each yi, there exists Ni such that n ≥ Ni implies [zn]yi > 0.

then, every yi has a common radius of convergence ρ <∞ and for each yi, there exists
a function hi analytic at the origin and yi(z) = hi(

√
1− z

ρ ) near ρ. Moreover, we

have
[zn]yi ≃

1

n
√
nρn

∑
k≥0

dk
nk
.

In our logic system, with the negation and the implication, we may check conditions
easily.

• From our equation, [zn]WA(z) values are uniquely determined by [zk]WB(z)
for every k < n and B ⊆ VA, so each WA(z) is uniquely determined.

• For any A ⊆ VA, ∅ → A = A \ ∅ = A and A → ∅ = ∅ \ A = ∅, so the
dependency graph is strongly connected since we have both arcs (W∅,WA) and
(WA,W∅).

• At first, for any A ⊆ VA, there exists a well-formed formula ϕ with Fϕ = A.
Now, for any tautology τ , Fτ→ϕ = A, also. Hence, by the Lemma 2.1, there
exists NA such that n ≥ NA implies there exists a well-formed formula ψ with
length n and Fψ = A.
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Hence, the density of tautologies is well-defined.
Moreover, to compute the exact value of the density, we will introduce the Szegő

lemma.

Lemma 2.4. Suppose that two power series U(z), V (z) have the common radius of
convergence ρ, this ρ is the unique simple singularity in the disk |z| ≤ |ρ| for them, we

have series expansion U(z) =
∑
k≥0 ûk

(√
1− z

ρ

)k
, V (z) =

∑
k≥0 v̂k

(√
1− z

ρ

)k
near ρ, and v̂1 ̸= 0. Then, limn→∞

[zn]U(z)
[zn]V (z) =

û1

v̂1
. Thus, we have

lim
n→∞

[zn]U(z)

[zn]V (z)
= lim
z→ρ−

U(z)−U(ρ)√
1−z/ρ

V (z)−V (ρ)√
1−z/ρ

= lim
z→ρ−

−2ρU ′(z)
√

1− z/ρ

−2ρV ′(z)
√
1− z/ρ

.

Since W (z) =
1−z−

√
(1−(1+2

√
m)z)(1−(1−2

√
m)z)

2z =
∑
A⊆VAWA(z), W also

has the common radius of convergence. Hence, our target radius of convergence ρ
is 1

2
√
m+1

, and we need to analyze W∅(z) near 1
2
√
m+1

to compute the density of
tautologies.

3 Exact Computation
Since our system of equations has 2|VA| = 22

m

unknowns, we will try to solve it by
divide and conquer method.

Definition 3.1. A partition {P1, · · · , Pn} of P(VA) is said to be well-organized for
an operation if the given operator is well-defined among parts in the partition. For
example, the partition is well-organized for → if for any 1 ≤ i, j ≤ n, there exists k
such that for any A ∈ Pi and B ∈ Pj , we have A → B ∈ Pk. In this case, we will
denote this as Pi → Pj = Pk.

This is a reminiscent of a quotient group in group theory. Hence, we will define a
reminiscent concept for the coset as the following.

Definition 3.2. For any A,B ⊆ VA, the standard subclass of P(VA) associated to
(A,B) is defined as

IA;B = {Y | A \B ⊆ Y ⊆ A ∪B}.

Here, if A ∩B = ∅, then IA;B = {A ∪ Y | Y ⊆ B} = {C ⊆ VA | C \B = A}, and
by the definition, IA;B = IA\B;B = IA∪B;B .

Then, let the standard subclass partition associated to B as

I;B = {IA;B | A ∩B = ∅}.

It is easy to check that this partition is naturally induced by the equivalence relation
A ∼B C ⇔ A \B = C \B ⇔ A ∪B = C ∪B ⇔ (A \ C) ∪ (C \A) ⊆ B.

Proposition 3.3. Standard subclasses satisfy the following equalities.

(a) {Y c | Y ∈ IA;B} = IAc;B = I¬A;B ,

(b) {Y ∩ Z | Y ∈ IA;B , Z ∈ IC;B} = IA∩C;B = IA∨C;B ,
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(c) {Y ∪ Z | Y ∈ IA;B , Z ∈ IC;B} = IA∪C;B = IA∧C;B ,

(d) {Y \ Z | Y ∈ IA;B , Z ∈ IC;B} = IA\C;B = IC→A;B ,

(e) IA;B ∪ IA∪{y};B = IA;B∪{y} if y ̸∈ A ∪B.

Proof. (a) For every Y ∈ IA;B , we have Y c\B = Y c∩Bc = (Y ∪B)c = (A∪B)c =
Ac \B, and so, Y c ∈ IAc;B . Then, the first equality is obtained by |IA;B | = |IAc;B |.

(b), (c), (d) can be done similarly.
(e) IA;B∪{y} = {(A\B)∪Y, (A\B)∪Y ∪{y} | Y ⊆ B} = IA;B∪IA∪{y};B .

Hence, I;B is well-organized for ¬, →, ∨ and ∧, and it really works as a ‘quotient
poset’ isomorphic to P(VA \ B) preserves set operations. Also, IA;B is a translation
of P(B), I∅;B is an order ideal, and IBc;B is a filter in the poset P(VA).

Moreover, we have the following.

Proposition 3.4. For a partition P of P(A) where A is a finite set, the followings are
equivalent.

• P is well-organized for \.

• P is well-organized for •c and ∪.

• P is well-organized for •c and ∩.

• P = I;B for some B ⊆ A.

Proof. It is enough to prove that if P is well-organized for \, •c, ∪ and ∩, then P = I;B
for some B ⊆ A. At first, since P is a partition, it naturally defines the equivalence
relation ∼. Now, let Y ∈ P be the part containing ∅. Since ∅ ∪ ∅ = ∅, Y is closed
under union. Hence, if B = ∪Z∈Y Z, then B ∈ Y , also. Moreover, for any C ⊆ B,
we have C = C ∪ ∅ ∼ C ∪B = B, so C ∈ Y . Hence, Y = P(B).

Now, for any C,D ⊆ A, if C \ B = D \ B, then C = (C \ B) ∪ (C ∩ B) ∼
(D \ B) ∪ (D ∩ B) = D, so C ∼ D. Lastly, suppose that C ∼ D. Then, C \ B ∼
C \∅ = C ∼ D\∅ ∼ D\B. Therefore, ∅ = C \C ∼ (C \B)\(D\B) = (C \D)\B.
Hence, (C \ B) \ (D \ B) ⊆ B, which implies (C \ B) \ (D \ B) = ∅, so we have
C \ B ⊆ D \ B. By symmetry, C \ B = D \ B. Thus, C ∼ D if and only if
C \B = D \B, which means P = I;B .

Now, let IA;B(z) be the generating function

IA;B(z) :=
∑

Y ∈IA;B

WY (z).

By the definition, for any Y ⊆ VA, WY (z) = IY ;∅(z) and W (z) = I∅;VA.
For fixed B ⊆ VA, these IA;B(z) form a following system of equations,

IA;B(z) = |{x ∈ X | Fx ∈ IA;B}| z + zIAc;B(z) +
∑

C\D=A\B
C∩B=D∩B=∅

zIC;B(z)ID;B(z),

which is similar to the system of equations forWA’s. Here, the number of unknowns is
reduced to 22

m−|B|. Hence, we will try to solve these equations from largeB’s to small
B’s. Now, we may count the number of pairs (C,D) such that C ∩ B = D ∩ B = ∅
and C \D = A\B. By considering the map (C,D) 7→ (C ∩D,D \C, (C ∪D)c), the
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number of such pair (C,D) is equal to the number of triplets (C∩D,D\C, (C∪D)c)
partitioning VA \ (A ∪ B). Hence, the number is 3|VA|−|A∪B| = 3|(A∪B)c|. Thus, it
is worth to define

I−;B(z) := IBc;B(z)

for convenience.

Proposition 3.5. For any A,B ⊆ VA, we have the following:

(a) IA;B(z) is a linear combination of elements of the set

{I∅;B(z)} ∪ {IC;B′(z) | C ⊊ A \B, C ∩B′ = ∅, |B′| = |B|+ 1, B ⊆ B′},

where the coefficient of I∅;B(z) is (−1)|A\B|.

(b) IA;B(z) is a linear combination of elements of the set

{I−;B(z)} ∪ {IC;B′(z) | A \B ⊆ C, C ∩B′ = ∅, |B′| = |B|+ 1, B ⊆ B′},

where the coefficient of I−;B(z) is (−1)|B
c\A|.

Proof. (a) It is enough to prove when A ∩ B = ∅. We will induct on |A|. It is trivial
for A = ∅. Suppose it is true for every A such that |A| = n and A ∩ B = ∅. Then, if
|A| = n+ 1 and A ∩B = ∅, choose any y ∈ A. Now, we have

IA;B(z) = IA\{y};B∪{y}(z)− IA\{y};B(z),

which proves the proposition.
(b) It follows from

IA;B(z) = IA;B∪{y}(z)− IA∪{y};B(z)

for y ̸∈ A ∪B.

Corollary 3.6. For any A,A′, B ⊆ VA, IA′;B(z) is a linear combination of elements
of the set

{IA;B(z)} ∪ {IC;B′(z) | |B′| = |B|+ 1, B ⊆ B′},

where the coefficient of IA;B(z) is ±1.

Proof. It directly follows from the above proposition, since the coefficient of I∅;B is
±1.

Corollary 3.7. For any A,B ⊆ VA, IA,B(z) is a linear combination of

(a)
{I∅;B′(z) | B ⊆ B′ ⊆ A ∪B}.

(b)

{I−;B′(z) | (A \B) ∩B′ = ∅, B ⊆ B′} = {I−;B′(z) | B ⊆ B′ ⊆ Ac ∪B}.

Proof. This also directly follows from Proposition 3.5.

The following proposition gives a way to compute exact coefficients when we write
IA;B(z) as a linear combination of I∅;B′(z)’s or I−;B′(z)’s.
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Proposition 3.8. For any A,B ⊆ VA,

(a)
IA;B(z) = (−1)|A∪B|

∑
B⊆B′⊆A∪B

(−1)|B
′|I∅;B′(z).

(b)
IA;B(z) = (−1)|A\B|

∑
B⊆B′⊆Ac∪B

(−1)|B
′|I−;B′(z)

Proof. (a) First, C ∈ I∅;B′ if and only if C ⊆ B′. Hence,

I∅;B′ ∩ I∅;B′′ = I∅;B′∩B′′

is satisfied for any B′ and B′′. Now, we have

IA;B = I∅;A∪B \

 ⋃
y∈A\B

I∅;(A\{y})∪B

 .

Thus, by the inclusion-exclusion principle, we get

IA;B(z) =

|A\B|∑
i=0

∑
Y⊆A\B,|Y |=i

(−1)iI∅;(A\Y )∪B(z)

=
∑

Y⊆A\B

(−1)|Y |I∅;(A\Y )∪B(z)

=
∑

B⊆B′⊆A∪B

(−1)|A∪B|−|B′|I∅;B′(z)

= (−1)|A∪B|
∑

B⊆B′⊆A∪B

(−1)|B
′|I∅;B′(z).

(b) Similarly, C ∈ I−;B′ if and only if B′c ⊆ C which is equivalent to Cc ⊆ B′.
Hence,

I−;B′ ∩ I−;B′′ = I−;B′∩B′′

is satisfied for any B′ and B′′. Now, we have

IA;B = I−;Ac∪B \

 ⋃
y∈(A∪B)c

I−;(A∪{y})c∪B

 .

Thus, by the inclusion-exclusion principle, we get

IA;B(z) =

|VA|−|A∪B|∑
i=0

∑
Y⊆(A∪B)c,|Y |=i

(−1)iI−;(A∪Y )c∪B(z)

=
∑

Y⊆(A∪B)c

(−1)|Y |I−;(A∪Y )c∪B(z)

=
∑

B⊆B′⊆Ac∪B

(−1)|B
′c\(A\B)|I−;B′(z)

= (−1)|A\B|
∑

B⊆B′⊆Ac∪B

(−1)|B
′|I−;B′(z).
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Note that these results directly come from the definition of IA;B , so it does not
depend on the logic system.

Theorem 3.9. For any A,B ⊆ VA, IA;B(z) is obtained by arithmetic operations and
taking square roots. In particular, so is WA(z).

Proof. We will induct on |B| in reverse direction, from the largest to the smallest.
If |B| = |VA| so B = VA, then I∅;B(z) = W (z) which is already known as a
composition of arithmetic operations and taking square roots.

Now, assume that it holds for everyB with |B| = n+1. Then, for the case |B| = n,
we have a system of equation

IA;B(z) = |{x ∈ X | Fx ∈ IA;B}| z + zIAc;B(z) +
∑

C\D=A\B
C∩B=D∩B=∅

zIC;B(z)ID;B(z).

Now, by Corollary 3.6, IAc;B(z), IC;B(z), ID;B(z) are linear combinations of IA;B(z)
and I•;B′(z)’s where |B′| = n + 1. Thus, given equation is an at-most-quadratic
equation for IA;B(z), and it is nontrivial since the coefficient of IA;B(z) is 1 modulo
z. Thus, IA;B(z) is again, a composition of arithmetic operations and taking square
roots.

Indeed, this theorem is also true for other propositional logic systems with at most
2-ary operators. Moreover, note that general systems of quadratic equations are not
even solvable by radicals. For example, a system of equation x = z2

y = x2

z = yz + ρ

is equivalent to the Bring-Jerrard quintic eqaution z5 − z + ρ = 0, where it is well-
known that there is no general solution using radicals for them.

Now, we will compute the exact value of the density of tautologies. At first, we
will start from the following equation:

I−;B = |{x | Fx ∈ I−;B}| z + zI∅;B + zI∅;BI−;B ,

where we have

I∅;B =
∑
B⊆B′

(−1)|B
′|I−;B′ = (−1)|B|I−;B +

∑
B⊊B′

(−1)|B
′|I−;B′ .

We will introduce the following definitions:

• m−;B := |{x | Fx ∈ I−;B}|,

• σB := (−1)|B|,

• I↑B(z) :=
∑
B⊊B′ σB′I−;B′ ,

• ρ0 := 1
2
√
m+1

,

• αB := I−;B(ρ0),

• α↑
B := I↑B(ρ0) =

∑
B⊊B′ σB′αB′ ,

10



• βB := 2ρ0 limz→ρ−0
I ′−;B(z)

√
1− z

ρ0
,

• β↑
B :=

∑
B⊊B′ σB′βB′ ,

• DB(z) := (1− (σB + I↑B)z)
2 − 4σBz

2(m−;B + I↑B).

• dB := DB(ρ0)
ρ20

= ( 1
ρ0

− σB − α↑
B)

2 − 4σB(m−;B + α↑
B).

Since W (z) = I∅;VA(z), by Szegő lemma, we have

lim
n→∞

[zn]IA;B(z)

[zn]W (z)
=
σA
∑
B⊆B′⊆Ac σB′βB′

βVA

for any disjoint A,B ⊆ VA.
At first, the quadratic equation for I−;B can be simplified as

I−;B = z(m−;B + I↑B) + z(σB + I↑B)I−;B + zσBI
2
−;B .

Hence, we have

I−;B =
1− (σB + I↑B)z −

√
DB(z)

(2σB) z
,

since I−;B(0) = 0. Then,

I ′−;B(z) =
−(σB + I↑B(z))− zI↑B

′
(z)− D′

B(z)

2
√
DB(z)

(2σB) z
− I−;B(z)

z
,

where

D′
B(z) = −2(σB+I

↑
B+zI

↑
B

′
)(1−(σB+I

↑
B)z)−4σBz

2(m−;B+I
↑
B

′
)−8σBz(m−;B+I

↑
B).

With these computations, we get the following:

αB =
2
√
m+ 1− σB − α↑

B −
√
dB

2σB
,

βB = β↑
B

−1 +
2
√
m+1+σB−α↑

B√
dB

2σB
,

where αVA =
√
m and βVA =

√
2m+

√
m. Here, dB = 0 only occurs when

β↑
B = 0, which is nothing but B = VA. Here, for each B ⊆ VA, we may use

the binary representation to make a correspondence to an integer b ∈ [0, 22
m

). With,
this representation, B ⊆ B′ implies b ≤ b′, so we can run this algorithm by simple
for-loops.

Finally, with these results, we can compute the density of tautologies

lim
n→∞

[zn]I∅;∅(z)

[zn]W (z)
=

∑
B⊆VA σBβB√
2m+

√
m

algorithmically. As a corollary, the density is a constructible number. Following table
gives its value for m = 1, 2, 3, 4.
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Table 1: The density of tautologies

m = 1 0.42324..
m = 2 0.33213..
m = 3 0.27003..
m = 4 0.22561..

4 Analytic Approach
From a quadratic equation for a generating function, to compute the nth degree coeffi-
cient, we need every informations from the constant term to the (n− 1)th degree term.
On the other hand, from the Drmota-Lalley-Woods theorem which gives

[zn]yi ≃
1

n
√
nρn

∑
k≥0

dk
nk
,

[zn]I∅;∅(z)

[zn]W (z) converges to its limit in O( 1n ) order, as shown in the following table.

Table 2: Approximation to the density

true n = 10 n = 50 n = 200
m = 1 0.4232 0.3102 0.4142 0.4210
m = 2 0.3321 0.2374 0.3206 0.3293
m = 3 0.2700 0.1913 0.2581 0.2670

Hence, if there is a way to compute more accurate approximate value with same
information, it can work as a memory-time trade-off. This kind of convergence speed
problem occurs for any general system of quadratic equations, not only for the system
of quadratic equations for tautologies. Thus, we will build a theory which is generally
applicable to systems of quadratic equations.

For a polynomial h, a power series Y (z) =
∑∞
n=0 Ynz

n is h-organized if

• There exists a limit ratio limn→∞
Yn+1

Yn
= 1

ρ > 1,

• There exist a power series f and a polynomial g such that Y (z) = f(z) +
g(z)Y (z) + h(z)Y (z)2,

• There exists a limit ratio limn→∞
[zn]f(z)
[zn]Y (z) = γ.

Here, we assume g, h as polynomials, so they do not have their own independent
combinatorial structures and only represent recursive relations in Y .

Now, suppose that power series Ai(z) =
∑∞
n=0Ai nz

n for i = 1, · · · , N satisfy
the following system of at-most-quadratic relations

Ai(z) = fi(z) +

N∑
j=1

gij(z)Aj(z) +

N∑
j,k=1

hijk(z)Aj(z)Ak(z),

where each fi is a power series, and each gij , hijk is a polynomial. This system of
equations is (Y, h)-organized if

12



• There exist limit ratios limn→∞
[zn]fi(z)
[zn]Y (z) = γi,

• There exist limit ratios limn→∞
[zn]Ai(z)
[zn]Y (z) = βi,

• Each hijk(z) is divisible by h(z).

Note that for such system, we may add Y (z) as A0(z) to the system freely. Moreover,
we may deal with cubic terms hijklAjAkAl if h2|hijkl, by introducing Bjk(z) =
h(z)Aj(z)Ak(z).

Lastly, for any power series F (z) =
∑∞
n=0 Fnz

n, define the s-cut of F as

F≤s(z) =

s∑
n=0

Fnz
n.

This s-cut of a power series represents computed results for coefficients of F . Hence,
for any value r, F (r) is computable by using known informations saved in the memory.

With these definitions, we will try to compute an approximate value for βi’s by
A≤s
i (z), Y ≤s(z). At first, we have

1 =
fn
Yn

+

deg g∑
u=0

gu
Yn−u
Yn

+

deg h∑
u=0

n−u∑
v=0

hu
YvYn−u−v

Yn
.

From this, we get

deg h∑
u=0

n−u−s−1∑
v=s+1

hu
YvYn−u−v

Yn
= 1− fn

Yn
−

deg g∑
u=0

gu
Yn−u
Yn

− 2

deg h∑
u=0

s∑
v=0

huYv
Yn−u−v
Yn

.

Here, as n→ ∞, Yn−u

Yn
→ ρu, so we expect that

deg h∑
u=0

n−u−s−1∑
v=s+1

hu
YvYn−u−v

Yn
≃ 1− γ − g(ρ)− 2h(ρ)Y ≤s(ρ).

Hence, we may define

ζs := 1− γ − g(ρ)− 2h(ρ)Y ≤s(ρ)

and
ζ∞ := lim

s→∞
ζs = 1− γ − g(ρ)− 2h(ρ)Y (ρ).

We will call this ζ∞ as the impurity of the equation Y (z) = f(z) + g(z)Y (z) +
h(z)Y (z)2.

Then, for a (Y, h)-organized system of equations for A1, · · · , AN , its s-cut oper-
ator Cs is the map
(x1, · · · , xN ) 7→ (c1, · · · , cN ) defined as

ci =γi +

N∑
j=1

gij(ρ)xj +

N∑
j,k=1

hijk(ρ)
(
A≤s
j (ρ)xk +A≤s

k (ρ)xj

)
+

N∑
j,k=1

ζs
hijk
h

(ρ)xjxk.

and (β
(s)
1 , · · · , β(s)

N ) is an s-cut solution of the given system of equations if it is a fixed
point of Cs.
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Theorem 4.1. Let h be a polynomial without negative coefficients, Y be an h-organized
power series without negative coefficients, and Y (ρ) is bounded. Now, if A1, · · · , AN
form a (Y, h)-organized system of equations, then, for the s-cut operator Cs, we have

(β1, · · · , βN ) = lim
s→∞

Cs(β1, · · · , βN )

Proof. At first, we have

lim
n→∞

deg h∑
u=0

hu

n−u−s−1∑
v=s+1

YvYn−u−v
Yn

= 1− γ − g(ρ)− 2h(ρ)Y ≤s(ρ) = ζs.

Here, |ζs| ≤ 1 + γ + |g|(ρ) + 2h(ρ)Y (ρ) <∞.
Now, let Cs(β1, · · · , βN ) = (c

(s)
1 , . . . , c

(s)
N ). Then, from

Ain
Yn

=
fin
Yn

+

n∑
j=1

deg gij∑
u=0

giju
[zn−u]Aj
Yn−u

Yn−u
Yn

+

N∑
j,k=1

deg hijk∑
u=0

hijku

n−u∑
v=0

[zv]Aj · [zn−u−v]Ak
Yn

and

c
(s)
i = γi+

N∑
j=1

gij(ρ)βj+

N∑
j,k=1

hijk(ρ)
(
A≤s
j (ρ)βk +A≤s

k (ρ)βj

)
+

N∑
j,k=1

ζs
hijk
h

(ρ)βjβk,

we get

βi − c
(s)
i = lim

n→∞

N∑
j,k=1

deg hijk/h∑
t=0

[zt]
hijk
h

·
deg h∑
u=0

hu

n−t−u−s−1∑
v=s+1

∆njktuv

where

∆njktuv =
[zv]Aj · [zn−t−u−v]Ak

Yn
− βjβkYvYn−t−u−v

Yn
.

Now, for any ϵ > 0, choose s so that s ≤ min{u, v} implies |βjβk − AjvAku

YuYv
| < ϵ for

any j, k; and choose n so that n > 2s+ deg hijk + deg h for every i, j, k. With these
choices, for any v such that s < v < n− t− u− s,

|∆njktuv| =
∣∣∣∣AjvAk,n−t−u−vYn

− βjβkYvYn−t−u−v
Yn

∣∣∣∣
≤ ϵ× YvYn−t−u−v

Yn−t

Yn−t
Yn

.

Hence, if we apply limn→∞, we get

|βi − c
(s)
i | ≤ ϵ

N∑
j,k=1

deg hijk/h∑
t=0

∣∣∣∣[zt]hijkh
∣∣∣∣ ζsρt = ϵζs

N∑
j,k=1

∣∣∣∣hijkh
∣∣∣∣ (ρ).

Thus, |βi − c
(s)
i | → 0 as s→ ∞. Hence, β = lims→∞ Cs(β).

From here, without special mention, we will assume an h-organized Y and a (Y, h)-
organized system.
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Proposition 4.2. Suppose that

• all the coefficients of Y, g, h are nonnegative,

• γ ≥ 0, or h(0) = 0 but h is nonzero,

• f(ρ), Y (ρ) converge.

Then we have

0 ≤
√
(1− g(ρ))2 − 4f(ρ)h(ρ)− γ ≤ ζs ≤ 1− γ − g(ρ)

and

lim
s→∞

ζs =
√

(1− g(ρ))2 − 4f(ρ)h(ρ)− γ = 1− γ − g(ρ)− 2h(ρ)Y (ρ).

Moreover, if f has no singularity in {z ∈ C | |z| < ρ+ ϵ} for some ϵ > 0, then both γ
and the impurity, ζ∞, are zero.

Proof. First, we have ζs = 1− γ − g(ρ)− 2h(ρ)Y ≤s(ρ) ≤ 1− γ − g(ρ). Moreover,

ζs = lim
n→∞

deg h∑
u=0

hu

n−u−s−1∑
v=s+1

YvYn−u−v
Yn

gives ζs ≥ 0 always.
Now, if h = 0, then γ ≥ 0, so we have 1− g(ρ) ≥ γ ≥ 0. Hence,

0 ≤ ζs = 1− γ − g(ρ) =
√
(1− g(ρ))2 − 4f(ρ)h(ρ)− γ.

For the case h is nonzero, then we have

Y (z) =
1− g(z)−

√
(1− g(z))2 − 4f(z)h(z)

2h(z)
.

Since f(ρ), Y (ρ) converge, it gives

Y (ρ) =
1− g(ρ)−

√
(1− g(ρ))2 − 4f(ρ)h(ρ)

2h(ρ)
.

Hence,

ζs = 1− g(ρ)− 2h(ρ)Y ≤s(ρ)− γ ≥ 1− g(ρ)− 2h(ρ)Y (ρ)− γ

and

0 ≤ lim
s→∞

ζs = 1− g(ρ)− 2h(ρ)Y (ρ)− γ =
√

(1− g(ρ))2 − 4f(ρ)h(ρ)− γ.

Now, consider the case that f has no singularity in {z ∈ C | |z| < ρ + ϵ}. By
Theorem IV.7 in [5], ρ is the closest singularity to zero of Y . If h is zero, then

Y (z) =
f(z)

1− g(z)
.

Since f has no singularity in {z ∈ C | |z| < ρ + ϵ}, it means g(ρ) = 1. Hence,
ζs = 1− γ − g(ρ) = −γ ≤ 0, so the impurity and γ are zero.

15



For the case that h is nonzero, f has no singularity in {z ∈ C | |z| < ρ + ϵ} and
g, h are polynomials, so

(1− g(ρ))2 − 4f(ρ)h(ρ) = 0.

Then, 1 − g(ρ) − 2h(ρ)Y (ρ) = 0 and lims→∞ ζs = −γ. Hence, it is enough to
prove that γ = 0. This can be induced from again Theorem IV.7 in [5], which gives
lim sup(fn)

1/n ≤ 1
ρ+ϵ .

Combining Theorem 4.1 and Proposition 4.2, we directly obtain the following.

Theorem 4.3. Suppose that

• coefficients of Y, g, h are nonnegative

• h is nonzero and h(0) = 0

• f(ρ), Y (ρ), A1(ρ), · · · , AN (ρ) converge

• the impurity is zero.

Then,

βi =γi +

N∑
j=1

gij(ρ)βj +

N∑
j,k=1

hijk(ρ)(Aj(ρ)βk +Ak(ρ)βj).

This theorem is also a variation of Szegő’s lemma. Moreover, this is linear on βj’s
when Aj(ρ)’s are given, and linear on Aj(ρ)’s when βj’s are given. Also, if Aj(ρ) are
given and γi’s are zero, then it is a homogeneous linear system on βj’s. For this case,
we need additional conditions to solve completely, such as

∑N
i=1 βi = 1. Lastly, it is

remarkable that with this result, we can compute the density of tautology only with αB
values.

From the equation Y (z) = f(z) + g(z)Y (z) + h(z)Y (z)2, g, h represent the
recursive structure and f represents basic elements. Hence, it is natural to find an
equation with γ = 0 for given power series Y (z).

Definition 4.4.

(a) If γ ̸= 1, the γ − γ̂ conversion of the equation Y (z) = f(z) + g(z)Y (z) +

h(z)Y (z)2 is defined as Y (z) = f̂(z) + ĝ(z)Y (z) + ĥ(z)Y (z)2 where

f̂(z) =
1− γ̂

1− γ
f(z) +

γ̂ − γ

1− γ
Y (z),

ĝ(z) =
1− γ̂

1− γ
g(z),

ĥ(z) =
1− γ̂

1− γ
h(z).

(b) If δ(z) is a polynomial, the δ conversion is defined as Y (z) = f̃(z)+g̃(z)Y (z)+

h̃(z)Y (z)2 where

f̃(z) = f(z) + δ(z)Y (z),

g̃(z) = g(z)− δ(z),

h̃(z) = h(z).

16



Proposition 4.5.

(a) For the γ − γ̂ conversion, we have

lim
n→∞

f̂n
Yn

= γ̂.

(b) For the γ − γ̂ conversion, ζs
1−γ is invariant. Moreover, if Y (ρ) converges, then

ζ∞
1−γ is invariant.

(c) For the δ conversion, we have

γ̃ = γ + δ(ρ).

(d) For the δ conversion, ζs is invariant and if Y (ρ) converges, then ζ∞ is invariant.

Proof. (a),(c) are simple computation.
(b) We have

ζ̂s = 1− γ̂ − ĝ(ρ)− 2ĥ(ρ)Y ≤s(ρ)

=
1− γ̂

1− γ

(
1− γ − g(ρ)− 2h(ρ)Y ≤s(ρ)

)
=

1− γ̂

1− γ
ζs.

(d) We have

ζ̃s = 1− γ̃ − g̃(ρ)− 2h̃(ρ)Y ≤s(ρ)

= 1− γ − δ(ρ)− g(ρ) + δ(ρ)− 2h(ρ)Y ≤s(ρ)

= ζs.

Now, we are going to compute the numerical estimations of the ratio βi’s by com-
puting s-cut solutions, which means we expect that

lim
s→∞

β
(s)
i = βi = lim

n→∞

Ain
Yn

is satisfied. Since the s-cut operator is quadratic, existence and uniqueness are not
guaranteed. Hence, we will provide some conditions for existence, uniqueness and
above convergence of the s-cut solution.

Definition 4.6. A (Y, h)-organized system A1, · · · , AN is a natural partition of Y if

Y (z) =

N∑
i=1

Ai(z),

f(z) =

N∑
i=1

fi(z),

g(z) =

N∑
i=1

gij(z),

2h(z) =

N∑
i=1

(hijk(z) + hikj(z)).
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Also, a natural partition system is nonnegative if Y , Ai, g, h, gij’s hijk’s have no
negative coefficients, and γ, γi ≥ 0.

Here, for a nonnegative natural partition system, we have γ, γi ≤ 1 and hijk(z) =
cijkh(z) for some constant cijk.

Proposition 4.7. Let (c1, · · · , cN ) be a fixed point of the s-cut operator Cs for a nat-
ural partition system (Y,A1, · · · , AN ) with nonzero ζs. Then, (c1, · · · , cN ) is on the
hyperplane x1 + · · ·+ xN = γ

ζs
or x1 + · · ·+ xN = 1 in RN .

Proof.

N∑
i=1

ci =

N∑
i=1

γi +

N∑
i=1

N∑
j=1

gij(ρ)cj +

N∑
i=1

N∑
j,k=1

hijk(ρ)(A
≤s
j (ρ)ck +A≤s

k (ρ)cj)

+

N∑
i=1

N∑
j,k=1

ζs
hijk
h

(ρ)cjck

=γ +

N∑
j=1

g(ρ)cj +
1

2

N∑
j,k=1

N∑
i=1

(hijk(ρ) + hikj(ρ))(A
≤s
j (ρ)ck +A≤s

k (ρ)cj)

+
1

2

N∑
j,k=1

N∑
i=1

ζs(
hijk
h

(ρ) +
hikj
h

(ρ))cjck

=γ + g(ρ)

N∑
j=1

cj +

N∑
j,k=1

h(ρ)(A≤s
j (ρ)ck +A≤s

k (ρ)cj) +

N∑
j,k=1

ζscjck

=γ + g(ρ)

N∑
j=1

cj + 2h(ρ)Y ≤s(ρ)

N∑
j=1

cj + ζs

 N∑
j=1

cj

2

.

Hence,

(ζs + γ)

N∑
j=1

cj = γ + ζs

 N∑
j=1

cj

2

,

which proves the proposition.

Proposition 4.8. The s-cut operator Cs of a nonnegative natural partition system has
a fixed point in

H := {(x1, · · · , xN ) ∈ RN : 0 ≤ xi ≤ 1,

N∑
i=1

xi = 1}.

Proof. Let Cs(x1, · · · , xN ) = (c1, · · · , cN ). If (x1, · · · , xN ) ∈ H , then as in the
proof of Proposition 4.7, we have

N∑
i=1

ci = γ + g(ρ) · 1 + 2h(ρ)Y ≤s(ρ) · 1 + ζs · 12 = 1.

In the proof of Proposition 4.2, we obtained ζs ≥ 0 from the fact that coefficients of Y
and h are nonnegative. Hence, we have ci ≥ 0 for every i. Then,

∑N
i=1 ci = 1 implies

ci ≤ 1, so (c1, · · · , cN ) ∈ H .
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Now, H is a convex compact set in RN , so by the Brouwer fixed point theorem, Cs
has a fixed point in H .

By simple computation, we have

∂ci
∂xj

=gij(r) +

N∑
k=1

(hijk(ρ) + hikj(ρ))A
≤s
k (ρ) + ζs

N∑
k=1

(
hijk
h

(ρ) +
hikj
h

(ρ))xk.

From this, we have the following result.

Proposition 4.9. For the Jacobian J of the s-cut operator Cs of a nonnegative natural
partition system,

∥J(x1, · · · , xN )∥1 = 1− ζs − γ + 2ζs

(
N∑
i=1

xi

)

on [0,∞)N , where ∥·∥1 denotes the 1-norm of a matrix. In particular, ∥J∥1 = 1−γ+ζs
on H .

Proof. Note that ∥B∥1 = max1≤j≤n
∑m
i=1 |bij | for any m × n matrix B. Since the

system is nonnegative, ∂ci∂xj
≥ 0 on [0,∞)N . Then,

N∑
i=1

∂ci
∂xj

=

N∑
i=1

gij(ρ) +

N∑
k=1

N∑
i=1

(hijk(ρ) + hikj(ρ))A
≤s
k (ρ)

+ ζs

N∑
k=1

N∑
i=1

(
hijk
h

(ρ) +
hikj
h

(ρ))xk

=g(ρ) +

N∑
k=1

h(ρ)2A≤s
k (ρ) + ζs

N∑
k=1

2xk

=g(ρ) + 2h(ρ)Y ≤s(ρ) + 2ζs

N∑
k=1

xk

=1− ζs − γ + 2ζs

N∑
k=1

xk,

which proves the result.

This result is also true when the nonnegativity condition is weakened: For instance,
γ and γi may not be nonnegative. Moreover, we have the following result for general
p-norms.

Proposition 4.10. For the Jacobian J of the s-cut operator Cs of a natural partition
system,

∥J(x1, · · · , xN )∥p ≥ |1− γ + ζs|

on H . Note that |1− γ+ ζs| = 1− γ+ ζs when the given system is nonnegative, since
we have γ ≤ 1 and ζs ≥ 0.
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Proof. Let JT denote the transpose of the Jacobian. We have

JT

1...
1

 = (1− γ + ζs)

1...
1


on H , from

∑N
i=1

∂ci
∂xj

= 1− ζs−γ+2ζs
∑N
k=1 xk = 1−γ+ ζs. Hence, 1−γ+ ζs is

an eigenvalue of JT , so is an eigenvalue of J . Thus, we get ∥J∥p ≥ |1− γ + ζs|.

Since the norm of the Jacobian of the s-cut operator Cs can be larger than 1, espe-
cially when γ = 0, this fact may cause some convergence issues when we try to find
an s-cut solution by applying the fixed point iteration method on Cs. Hence, we may
consider the following modification.

Definition 4.11. The σ-shifted s-cut operator C̃σs is defined as

C̃σs (x) = Cs(x)− σ

(
N∑
i=1

xi − 1

)
· (1, 1, · · · , 1).

Since C̃σs (x) = Cs(x) for all x ∈ H , fixed points of Cs on H are fixed points of
C̃σs . Moreover,

J̃ = J −


σ σ · · · σ

σ
. . . · · ·

...
...

...
. . .

...
σ · · · · · · σ

 = J − σ1,

where J̃ is the Jacobian for C̃σs .
From the Banach contraction principle, we deduce the following.

Proposition 4.12. If the Jacobian J̃ of C̃σs satisfies ∥J̃∥ < 1 for a matrix norm ∥ · ∥ on
H , then C̃σs is a contraction on H , and Cs has the unique fixed point on H .

Note that since H is compact, ∥J̃∥ < 1 is enough to apply the Banach contraction
principle rather than the condition that there exists K < 1 such that ∥J̃∥ ≤ K. From
∥A − B∥ ≥ |∥A∥ − ∥B∥|, it would be best to choose σ satisfying ∥J∥ = ∥σ1∥, and
one of such choice is σ = 1−γ+ζs

N , which is from the 1-norm. Hence, we will call the
s-cut operator shifted by this value as the standard shifted s-cut operator.

Corollary 4.13. The Jacobian J̃ of the standard shifted s-cut operator C̃s of a non-
negative natural partition system satisfies ∥J̃∥1 < 1 on H if 1− 2γ + 2ζs > 0 and

∂ci
∂xj

<
1− γ + ζs

N
+max

{
1− γ + ζs

N(1− 2γ + 2ζs)
,

1

2(N − 1)

}
.

Note that 1− 2γ+2ζs ≤ 0 implies 1− γ+ ζs ≤ 1
2 , which means ∥J∥1 < 1 is already

satisfied without shifting.

Proof. Since ∥J̃∥1 = max
{∑N

i=1

∣∣∣ ∂ci∂xj
− 1−γ+ζs

N

∣∣∣ | j = 1, · · · , N
}

, and we have∑N
i=1

∂ci
∂xj

= 1−γ+ζs already, it is enough to prove that ais arranged as max{ 1−γ+ζs
N(1−2γ+2ζs)

, 1
2(N−1)}+
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1−γ+ζs
N > a1 ≥ a2 ≥ · · · ≥ am ≥ 1−γ+ζs

N ≥ am+1 ≥ · · · ≥ aN ≥ 0 satisfying∑N
i=1 ai = 1 − γ + ζs satisfies

∑N
i=1 |ai −

1−γ+ζs
N | < 1. Since 1−γ+ζs

N is the mean
of ais, we may assume m < N . Easily,

N∑
i=1

∣∣∣∣ai − 1− γ + ζs
N

∣∣∣∣ = m∑
i=1

(ai −
1− γ + ζs

N
) +

N∑
i=m+1

(
1− γ + ζs

N
− ai)

=
1− γ + ζs

N
(N − 2m) +

m∑
i=1

ai −
N∑

i=m+1

ai

=
1− γ + ζs

N
(N − 2m) + 2

m∑
i=1

ai − (1− γ + ζs)

= 2

m∑
i=1

ai −
2m

N
(1− γ + ζs).

If 1
2(N−1) ≥

1−γ+ζs
N(1−2γ+2ζs)

, we have ai < 1
2(N−1) +

1−γ+ζs
N , so

2

m∑
i=1

ai −
2m

N
(1− γ + ζs)

< 2m(
1

2(N − 1)
+

1− γ + ζs
N

)− 2m

N
(1− γ + ζs) =

m

N − 1
≤ 1.

For the other case, if m > N
(
1− 1

2(1−γ+ζs)

)
, we have

2

m∑
i=1

ai −
2m

N
(1− γ + ζs) ≤ 2

N∑
i=1

ai −
2m

N
(1− γ + ζs)

≤ 2(1− γ + ζs)−
2m

N
(1− γ + ζs)

= 2(1− γ + ζs)(1−
m

N
) < 1,

and if m ≤ N(1− 1
2(1−γ+ζs) ), we have ai < 1−γ+ζs

N(1−2γ+2ζs)
+ 1−γ+ζs

N , so

2

m∑
i=1

ai −
2m

N
(1− γ + ζs)

< 2m

(
1− γ + ζs

N
+

1− γ + ζs
N(1− 2γ + 2ζs)

)
− 2m

N
(1− γ + ζs)

=
m

N

2(1− γ + ζs)

1− 2γ + 2ζs

≤
(
1− 1

2(1− γ + ζs)

)
2(1− γ + ζs)

1− 2γ + 2ζs
= 1.

This corollary gives a condition to have the unique s-cut solution by computing
the 1-norm of the shifted s-cut operator. Finding the best choice to shift based on
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the matrix 1-norm of the Jacobian is equivalent to find σ from given nonnegative se-
quences a(1), · · · , a(N) satisfying

∑
i a

(1)
i = · · · =

∑
i a

(N)
i such that minimizes the

max
{∑

i

∣∣∣a(j)i − σ
∣∣∣ | j = 1, · · · , N

}
. For each j, it is well-known that the median

minimizes
∑
i

∣∣∣a(j)i − σ
∣∣∣, compare with that mean minimizes

∑
i(a

(j)
i − σ)2, where

the standard shift operator is defined as to choose σ as the mean, which is easier to
compute than the median. Hence, it may be possible to refine the condition to have
unique s-cut solution by considering the median rather than the mean. In such case,
we may have to use some variant of the iteration method. For example, we may use
different iteration functions for each iteration.

Lastly, we will prove the following, to understand s-cut solution as an approxima-
tion.

Theorem 4.14. Suppose that a nonnegative natural partition system have a common
contraction factor K < 1 and a sequence of proper shifting factor {σs} of the s-cut

operator Cs satisfying
∣∣∣C̃σs
s (x)− C̃σs

s (y)
∣∣∣ ≤ K|x − y| for any x, y ∈ H except for

finitely many s.
Then, there exists a sequence of s-cut solutions on H , β(s) = (β

(s)
1 , · · · , β(s)

N ),
converging to β = (β1, · · · , βN ) as s→ ∞.

Proof. From Theorem 4.1, lims→∞ Cs(β) = β is satisfied. We may assume that s is
large enough to have a common contraction constant K. Then, we have

|β − β(s)| ≤ |β − Cs(β)|+ |Cs(β)− β(s)| = |β − Cs(β)|+ |Cs(β)− Cs(β
(s))|.

SinceCs = C̃σs onH ,Cs is also a contraction onH with the same contraction constant.
Hence,

|β − β(s)| ≤ |β − Cs(β)|+ |Cs(β)− Cs(β
(s))| ≤ |β − Cs(β)|+K|β − β(s)|.

Thus,

|β − β(s)| ≤ 1

1−K
|β − Cs(β)| → 0

as s → ∞. Note that except for finitely many s’s, each β(s) is uniquely determined.

The following table compares ratios at s and s-cut solutions for the density of
tautologies with one variable, which is 0.4232385....

Table 3: Comparison of simple approximations and s-cuts for the one variable case

ratio s-cut
s = 10 0.3101796... 0.4242620...
s = 100 0.4187317... 0.4232740...
s = 1000 0.4227880... 0.4232396...
s = 10000 0.4231935... 0.4232386...

Hence, the s-cut solution seems to work as a memory-time trade-off to compute an
approximation.
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5 Asymptotic Behavior
Even though we have a general method to compute the exact density of tautology,
it is hard to compute for the case m ≥ 5 since we need at least 22

m

computations
and memories. Hence, to estimate its asymptotic behavior, we require some different
approach.

At first, fix m-element variable set X as the set of variables {x0, x1, · · · , xm−1},
so it will generate a chain structure as the number of variable is changed.

Definition 5.1. Let X = {x0, x1, · · · } be a countably infinite set of variables, and W
be the set of well-formed formulae of X . For any σ ∈ S{0,1,2,... } =: S∞, the set of
all permutations of {0, 1, 2 . . . } with a finite support, we have a natural action on W
defined as

σxi = xσ(i),

σ¬ϕ = ¬σϕ,
σ[ϕ→ ψ] = σϕ→ σψ.

A formula ϕ ∈ W is a type formula if for every occurrence of xi, there must exist
occurrences of x0, · · · , xi−1 before it. The type of a well-formed formula ψ is the
type formula ϕ such that there exists σ ∈ S∞ satisfying ψ = σϕ. It is easy to prove
that the type of a well-formed formula exists uniquely.

Lastly, for any formula ϕ ∈ W , define an estimator as

ν(ϕ) := |X[ϕ]| − 1

2
ℓ(ϕ).

Proposition 5.2. For any σ ∈ S∞, we have Fσϕ = {σv | v ∈ Fϕ} where (σv)(xi) =
v(σ−1xi). In particular, ϕ is a tautology or an antilogy if and only if its type is a
tautology or an antilogy, respectively.

Proposition 5.3. For any type formula ϕ and m ≥ |X[ϕ]|, we have ∑
ψ:ϕ-type,X[ψ]⊆{x0,··· ,xm−1}

zℓ(ψ)

∣∣∣∣∣∣
z= 1

2
√

m+1

=
m|X[ϕ]|

(2
√
m+ 1)ℓ(ϕ)

= Θ(mν(ϕ)).

where mk is the falling factorial m(m− 1) · · · (m− k + 1).

From Theorem 4.3, we have a relation between generating function values at the
singularity point and limit ratios of coefficients, so it can be expected that tautologies
with large ν values dominate the density of tautologies. Since W ( 1

2
√
m+1

) =
√
m, the

density is expected as mν(ϕ)− 1
2 .

Now, we will prove basic properties of ν. We begin with the following lemma.

Lemma 5.4. (a) If ϕ has no ¬’s, then ϕ is true when the rightmost variable is true.

(b) If ϕ has no repeated variables, then there is a truth assignment that makes ϕ true
and a truth assignment that makes ϕ false.

(c) Suppose that ϕ has no repeated variables, no ¬’s and that p is a variable in ϕ
but ϕ ̸= p. Then, there is a truth assignment that p is true and a truth assignment
that p is false, where both of them make ϕ true.
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(d) Suppose that ϕ has no repeated variables, no ¬’s and that p is not the rightmost
variable of ϕ. Then, there is a truth assignment that makes ϕ false and p is true.

Proof. (a) We will induct on the length of ϕ. If ϕ is a variable, then done. Otherwise,
since ϕ = ψ → η and η is true by the induction hypothesis, so is ϕ.

(b) By induction, if ϕ is a variable, then done. Otherwise, it is trivial when ϕ = ¬ψ
for some ψ, since ¬ reverses trueness and falseness. Now, if ϕ = ψ → η, then there
are an assignment u on ψ that makes ψ true and an assignment v on η that makes η
false, by induction hypothesis. Since ϕ has no repeated variables, X[ψ] ∩ X[η] = ∅.
Thus, we have an assignment u⊕ v such that u⊕ v = u on X[ψ], u⊕ v = v on X[η].
Precisely, with the convention VA = P(X), we may define u⊕v = u[ψ]∪v[η]. Then,
Jϕ;u⊕ vK = 1− Jψ;uK(1− Jη; vK) = 0. Hence, u⊕ v is an assignment that makes ϕ
false. Similarly, there is an assignment that makes ϕ true.

(c) Since ϕ has no ¬’s and ϕ is not p, ϕ = ψ → η for some ψ, η. If p ∈ X[ψ],
then there exists an assignment u that makes η true by (b). Here, p ̸∈ X[η], so we
may choose u−, u+ such that u− = u = u+ on X[η] and u−(p) = 0, u+(p) = 1.
Similarly, when p ∈ X[η], it can be done by using an assignment that makes ψ false.

(d) Since ϕ has no ¬’s and p is not the rightmost variable, clearly we have ϕ ̸= p.
If p ̸∈ X[ϕ], then the case (b) is applicable. So we only need to consider the case that
ϕ = ψ → η for some ψ and η. First, suppose that p ∈ X[ψ]. Then, by (b), there is an
assignment u that makes η false. Now, if ψ ̸= p, then by (c), there is an assignment v
that makes both p and ψ true. Then, we may construct u⊕ v so p is true and ϕ is false,
since ϕ has no repeated variables. If ψ = p, then for any assignment u that makes η
false, we may construct u+ makes p is true, so ϕ is false.

Now, if p ∈ X[η], then by the induction hypothesis, there is an assignment u that η
is false but p is true. By (b), there is an assignment v that makes ψ true, so there is an
assignment u⊕ v that makes ϕ false.

Then, we have the following.

Proposition 5.5.

(a) For any well-formed formula ϕ, ν(ϕ) ≤ 1
2 .

(b) For any tautology ϕ, ν(ϕ) ≤ − 1
2 . Moreover, ν(ϕ) = − 1

2 if and only if ϕ does
not contain ¬ symbol, ϕ has unique variable appears twice, and every other
variables in ϕ appears only once.

(c) For any antilogy ϕ, ν(ϕ) ≤ −1.

Proof. (a) Induction on the length. At first, ν(xi) = 1 − 1
2 = 1

2 , and ν(¬ϕ) =
ν(ϕ)− 1

2 ≤ 0. Finally, we have

ν(ϕ→ ψ) ≤ |X[ϕ]|+ |X[ψ]| − 1

2
(ℓ(ϕ) + ℓ(ψ) + 1) = ν(ϕ) + ν(ψ)− 1

2
≤ 1

2
.

(b) For a well-formed formula ϕ, the number of occurrences of variables is exactly
the number of occurrences of →’s plus 1. Let R be the number of variables in ϕ that
do not appear first time in ϕ, Y be the number of occurrences of →’s, and N be the
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number of occurrences of ¬’s. Then, we have

ν(ϕ) = |X[ϕ]| − 1

2
ℓ(ϕ)

= Y + 1−R− 1

2
(Y + (Y + 1) +N)

=
1

2
−R− 1

2
N.

Hence, ν(ϕ) ≥ 0 impliesR = 0, so ϕ has no repeated variables. Then, by Lemma 5.4(b),
ϕ is not a tautology. The remaining part follows from the fact that R ≥ 1 and
ν(ϕ) = − 1

2 imply N = 0.
(c) By Lemma 5.4(a) and (b), any antilogy ϕ needs at least one ¬ and repeated

variables. Hence, R ≥ 1 and N ≥ 1, so ν(ϕ) ≤ −1.

Proposition 5.6. Suppose that ϕ is a tautology and ν(ϕ) = − 1
2 . Then, there are well-

formed formulae ψ1, · · · , ψk, η without ¬’s, pairwise common variables, and repeated
variables such that ϕ is ψ1 → [ψ2 → [· · · → [ψk → [p → η]] · · · ]] where p is the
rightmost variable of η. Here, k = 0 is possible.

Proof. First, ϕ has no ¬’s and has the unique repeated variable p which appears twice,
by above proposition. Hence, ϕ = ψ → η for some ψ, η.

Suppose ψ and η have no common variables. Then, by Lemma 5.4(a), there is an
assignment u that makes ψ true. Hence, if there is an assignment v that makes η false,
we have u ⊕ v that makes ϕ = ψ → η false. Thus, there is no assignment that makes
η false, so η is again a tautology. This implies that p ∈ X[η], since every tautology
has at least one repeated variable. Hence, η is again a tautology with |η| = − 1

2 .
Then, by induction on length, η is ψ2 → [· · · → [ψk → [p → η′]] · · · ] and so, ϕ is
ψ1 → [ψ2 → [· · · → [ψk → [p→ η′]] · · · ]]. Thus, done.

Now, assume that ψ and η have a common variable. Then, from the uniqueness
of the repeated variable of ϕ, it must be p. If ψ ̸= p, then by Lemma 5.4(b), there is
an assignment u that makes η false. If u(p) = 1, then by Lemma 5.4(c), there is an
assignment v on ψ that makes both p and ψ true. Also, if u(p) = 0, then we have an
assignment v on ψ that makes ψ true and p false. In any case, u⊕ v makes ϕ = ψ → η
false, which is a contradiction. So ψ = p.

Then, we have ϕ = p → η. If p is not the rightmost variable of η, then by
Lemma 5.4(d), there is an assignment u on η that makes η false and u(p) = 1. Hence,
u makes ϕ false, which is a contradiction. Thus, p is the rightmost variable of η.

From these results, we may guess that the density of tautologies is of 1
m order: since

the maximum ν(·) of well-formed formulae is 1
2 and the maximum ν(·) of tautologies

is − 1
2 , we may expect m

− 1
2

m
1
2

= 1
m order. Similarly, for antilogies, we may expect 1

m
√
m

order.
Also, this result is very similar to the definition of simple tautologies defined in [8]

and [16], which give that in the logic system with → and negative literals the density
of tautologies is asymptotically same as the density of simple tautologies, i.e., 7

8m +
O( 1

m2 ). In [8], a simple tautology is defiend as a tautology of the form

ϕ1 → [ϕ2 → [· · · → [ϕn → p] · · · ]],

which can be simplified with the canonical form of an expression, also defined in [8],
as

ϕ1, · · · , ϕn 7→ p

25



where each ϕi is a well-formed formula and p is a variable, with condition ϕi = p for
some i; or for some distinct pair i and j, ϕi is a variable and ϕj = ϕ̄i. Here, x̄ means
negative literal of x.

The former is called a simple tautology of the first kind, and the latter is called a
simple tautology of the second kind. But there are some differences between our case
and the given cases. Firstly, for the case of implication with negative literals, there is
no antilogy. Secondly, we have to negate, rather than using negative literals, which
increases the length of the formula. It introduces the factor

√
m in asymptotic ratio,

which changes the order. Hence, we will define simple tautologies for our propositional
logic system as follows.

Definition 5.7. In the following, k ≥ 1.

(a) A well-formed formula ϕ is a simple tautology, if there exist well-formed for-
mulae ψ1, · · · , ψk and a variable p such that ϕ is

ψ1, · · · , ψk 7→ p

with ψi = p for some i. Let S1 be the set of simple tautologies.

(b) A well-formed formula ψ1, · · · , ψk 7→ p is a strict simple tautology, if ψ1 = p
and ψ2, · · · , ψk ̸= p. Let Sc be the set of strict simple tautologies.

Now, we will try to analyze the asymptotic behavior for the density of tautologies.
Actually, it is easy to prove that Ω( 1

m ). For any tautology ψ, ¬¬ψ is a tautology and
for any well-formed formula ϕ, p → [ϕ → p] is a tautology for any variable p. Hence,
we have

[zn]W∅(z) ≥ [zn−2]W∅(z) +m · ([zn−4]W (z)).

Then, we have

[zn]W (z) ≃
√

2m+
√
m

4πn3
(2
√
m+ 1)n

from the expression

W (z) =
1− z −

√
(1− (2

√
m+ 1)z)(1 + (2

√
m− 1)z)

2z

=
√
m−

√
2m+

√
m

√
1− (2

√
m+ 1)z +O(1− (2

√
m+ 1)z).

Hence, limn→∞
[zn−2]W (z)
[zn]W (z) = 1

(2
√
m+1)2

and limn→∞
[zn−4]W (z)
[zn]W (z) = 1

(2
√
m+1)4

. Thus,

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≥
(

1

(2
√
m+ 1)2

lim
n→∞

[zn−2]W∅(z)

[zn−2]W (z)

)
+

m

(2
√
m+ 1)4

and so,

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≥

√
m

4(
√
m+ 1)(2

√
m+ 1)2

,

where we have
√
m

4(
√
m+1)(2

√
m+1)2

= Θ( 1
m ). Thus, the density of tautologies is Ω( 1

m ).
For antilogies, we can get Ω( 1

m
√
m
) from

[zn]WVA(z) ≥ [zn−1]W∅(z),

since every ¬ϕ is an antilogy for any tautology ϕ.
Also, simple tautologies give better lower bound as follows.
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Proposition 5.8.

(a) The generating function S1 of S1 is

mz3

(1 + z2 − zW (z))(1− zW (z))

and

lim
n→∞

[zn]S1(z)

[zn]W (z)
=

m(4m+ 6
√
m+ 3)

(
√
m+ 1)2(2m+ 3

√
m+ 2)2

=
1

m
− 7

2m
√
m
+

7

m2
+O(

1

m2
√
m
).

(b) The generating function Sc of Sc is

mz3

1 + z2 − zW (z)

and

lim
n→∞

[zn]Sc(z)

[zn]W (z)
=

m

(2m+ 3
√
m+ 2)2

=
1

4m
− 3

4m
√
m
+

19

16m2
+O(

1

m2
√
m
).

Proof. (a) The generating function of well-formed formulae of the form ψ1, · · · , ψk 7→
p is

mz(zW (z)) +mz(zW (z))2 +mz(zW (z))3 + · · · = mz2W (z)

1− zW (z)
.

Here, mz term is for the variable p, and zW (z) term is for the ψi with → symbol.
Now we select simple tautologies by using the fact that a given well-formed formula is
not a simple tautology if and only if every ψi is not p. We induce that the generating
function of such well-formed formulae is

mz(z(W (z)−z))+mz(z(W (z)−z))2+mz(z(W (z)−z))3+· · · = mz2(W (z)− z)

1 + z2 − zW (z)
.

Hence, we have

S1(z) =
mz2W (z)

1− zW (z)
− mz2(W (z)− z)

1 + z2 − zW (z)
=

mz3

(1 + z2 − zW (z))(1− zW (z))
.

Then, by Szegő’s lemma, when we take ρ0 = 1
2
√
m+1

, we have

lim
n→∞

[zn]S1(z)

[zn]W (z)
=

limz→ρ−0
S′
1(z)

√
1− z/ρ0

limz→ρ−0
W ′(z)

√
1− z/ρ0

.

Now, we have

S′
1(z) = −mz

3((1 + z2 − zW (z))(−zW ′(z)) + (1− zW (z))(−zW ′(z))

(1 + z2 − zW (z))2(1− zW (z))2
+R(z)

=
mz4(2 + z2 − 2zW (z))W ′(z)

(1 + z2 − zW (z))2(1− zW (z))2
+ R̃(z)
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where limz→ρ−0
R(z)

√
1− z/ρ0 = limz→ρ−0

R̃(z)
√

1− z/ρ0 = 0. Thus, we have

lim
n→∞

[zn]S1(z)

[zn]W (z)
=

mρ40(2 + ρ20 − 2ρ0W (ρ0))

(1 + ρ20 − ρ0W (ρ0))2(1− ρ0W (ρ0))2
=

m(4m+ 6
√
m+ 3)

(
√
m+ 1)2(2m+ 3

√
m+ 2)2

.

Also, from S1(z)(1 + z2 − zW (z))(1 − zW (z)) = mz3 and z(W (z))2 = W (z) −
mz − zW (z), we have an equation

S1(z) = mz3 + (m− 1)z2S1(z) + z(1 + z + z2)W (z)S1(z),

and if we use Theorem 4.3, we get

lim
n→∞

[zn]S1(z)

[zn]W (z)
=

ρ(1 + ρ0 + ρ20)S1(ρ0)

1− (m− 1)ρ20 − ρ0(1 + ρ0 + ρ0)2W (ρ0)
=

m(4m+ 6
√
m+ 3)

(
√
m+ 1)2(2m+ 3

√
m+ 2)2

.

which matches to the result from the Szegő’s lemma.
(b) This can be done similarly as (a).

Now, to improve more, we will consider the following.

Definition 5.9. Let B be a set of tautologies and antilogies.

(a) The strong B-category is a partition of well-formed formulae consisting of strong
B-tautologies (T∗), B-antilogies (A∗), and B-unknowns (U∗) determined by B
such that

• ϕ ∈ T∗ if and only if ϕ ∈ B and ϕ is a tautology; ϕ is ¬ψ form where
ψ ∈ A∗; or ϕ is ψ → η form where η ∈ T∗.

• ϕ ∈ A∗ if and only if ϕ ∈ B and ϕ is an antilogy; ϕ is ¬ψ form where
ψ ∈ T∗; or ϕ is ψ → η form where ψ ∈ T∗ and η ∈ A∗.

• ϕ ∈ U∗ if and only if ϕ ̸∈ T∗ ∪ A∗.

The following table shows this recursive classification.

Table 4: Strong categories

T∗ U∗ A∗
¬ A∗ U∗ T∗

T∗ → T∗ U∗ A∗
U∗ → T∗ U∗ U∗
A∗ → T∗ U∗ U∗

(b) The weak B-category is a partition of well-formed formulae consisting of strong
B-tautologies (T ∗), B-unknowns (U∗), and B-antilogies (A∗) determined by B
such that

• ϕ ∈ T ∗ if and only if ϕ ∈ B and ϕ is a tautology; ϕ is ¬ψ form where
ψ ∈ A∗; or ϕ is ψ → η form where η ∈ T ∗ or ψ ∈ A∗.

• ϕ ∈ A∗ if and only if ϕ ∈ B and ϕ is an antilogy; ϕ is ¬ψ form where
ψ ∈ T ∗; or ϕ is ψ → η form where ψ ∈ T ∗ and η ∈ A∗.

• ϕ ∈ U∗ if and only if ϕ ̸∈ T ∗ ∪ A∗.

The following table shows this recursive classification.
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Table 5: Weak categories

T ∗ U∗ A∗

¬ A∗ U∗ T ∗

T ∗ → T ∗ U∗ A∗

U∗ → T ∗ U∗ U∗

A∗ → T ∗ T ∗ T ∗

(c) A well-formed formula ϕ is weak (resp. strong) B-basic if ϕ is not a weak (resp.
strong) B-unknown and ϕ is a weak (resp. strong) (B \ {ϕ})-unknown.

(d) The set B is weak (resp. strong) basic if every ϕ ∈ B is weak (resp. strong)
B-basic.

(e) A set of B-knowns B′ is a weak (resp. strong) basis of B if B′ is weak (resp.
strong) basic and every ϕ ∈ B is a weak (resp. strong) B′-known.

This proposition is true for both weak and strong category.

Proposition 5.10. Suppose B is a set of tautologies and antilogies.

(a) For a basis B̃ of B, B̃-category is same as B-category.

(b) Every well-formed formula ϕ of a basis B̃ of B is B-basic.

(c) Every B has a basis and a well-formed formula ϕ is in a basis B̃ if and only if ϕ
is B-basic. In particular, there is a unique basis B̃ of B, which is a subset of B.

Proof. (a) With induction on the length of well-formed formulae, it comes from the
recursive structure of categories.

(b) If ϕ is not B-basic, then ϕ is (B \ {ϕ})-known. Now, for every well-formed
formula ψ with ℓ(ψ) < ℓ(ϕ), B-category, (B \ {ϕ})-category, B̃-cateogory and (B̃ \
{ϕ})-category are all same. Hence, ϕ is a (B̃ \ {ϕ})-known, contradicting that B̃ is
basic.

(c) It is enough to show that every B-basic ϕ is in B̃ and the set of B-basic well-
formed formulae is a basis. If ϕ is B-basic, then ϕ is not a (B \ {ϕ})-known and so,
not a (B̃ \ {ϕ})-known. Since B̃ is a basis, ϕ is a B̃-known, and so, ϕ ∈ B̃.

Let B̂ be the set of B-basic well-formed formulae. Then, by the definition of basic
well-formed formula, B̂ ⊆ B. Since ϕ ∈ B̂ is not a (B \ {ϕ})-known, it is not a
(B̂ \ {ϕ})-known, and so, B̂ is basic. Let ψ be a shortest B-known that is not a B̂-
known. Then, for every shorter well-formed formula ψ′ than ψ, (B \ {ψ})-category is
same as B̂-category. Now, ψ is not B-basic, so is a (B \ {ψ})-known, and hence ψ is
a B̂-known, which is a contradiction. So every B-known is a B̂-known, and so, B̂ is a
basis of B.

Proposition 5.11. For a set B of tautologies and antilogies, every strong B-tautology
is a weak B-tautology, and every weak B-tautology is a tautology. Hence, every weak
B-basic well-formed formula is strong B-basic.

The following system of equations naturally follows from the structure of B-categories.
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Proposition 5.12. Let B be a set of tautologies and antilogies.

(a) Let BT∗, BA∗, T∗, U∗, A∗ be the generating functions of the strong basic tau-
tologies of B, strong basic antilogies of B, strong B-tautologies, strong B-unknowns,
and strong B-antilogies, respectively. Then the following system of equations is
satisfied.

T∗(z) = BT∗(z) + zA∗(z) + zT∗(z)W (z),

U∗(z) = mz −BT∗(z)−BA∗(z) + zU∗(z) + z[U∗(z)W (z) +A∗(z)W (z)−A∗(z)T∗(z)],

A∗(z) = BA∗(z) + zT∗(z) + zA∗(z)T∗(z).

(b) Let BT ∗, BA∗, T ∗, U∗, A∗ be the generating functions of the weak basic tau-
tologies of B, weak basic antilogies of B, weak B-tautologies, weak B-unknowns,
and weak B-antilogies, respectively. Then the following system of equations is
satisfied.

T ∗(z) = BT ∗(z) + zA∗(z) + z[T ∗(z)W (z) +A∗(z)W (z)−A∗(z)T ∗(z)],

U∗(z) = mz −BT ∗(z)−BA∗(z) + zU∗(z) + zU∗(z)W (z),

A∗(z) = BA∗(z) + zT ∗(z) + zA∗(z)T ∗(z).

Note that these systems of equations have fixed number of equations whenever m,
the number of variables of the propositional logic system, changes, so they make easy
to analyze an asymptotic lower bound as m→ ∞. Here, for fixed B, we have

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≥ lim
n→∞

[zn]T ∗(z)

[zn]W (z)
≥ lim
n→∞

[zn]T∗(z)

[zn]W (z)

Proposition 5.13. (a) Sc is the strong basis of S1.

(b) The weak basis of S1 is the set of well-formed formulae of the form ψ1 → [· · · →
[ψk → p] · · · ] where ψ1 = p, and ψ2, · · · , ψk are not p nor S1-antilogy. Its
generating function satisfies

B∗(z) =
mz3

1 + z2 − zW (z) + zA∗(z)
.

which naturally satisfies

B∗(z) = mz3 − z2B∗(z) + z[B∗(z)W (z)−B∗(z)A∗(z)].

Now, we may solve the equation for S1-strong case algebraically. SinceBA∗(z) =

0, with the identity A∗(z) =
zT∗(z)

1−zT∗(z)
, we obtain

T∗(z) =
1− z2 + zSc(z)− zW (z)−

√
(1− z2 + zSc(z)− zW (z))2 − 4zSc(z)(1− zW (z))

2z(1− zW (z))

A∗(z) =
zT∗(z)

1− zT∗(z)
,

U∗(z) =
mz − Sc(z) + zA∗(z)

2

1− z − z(W (z) +A∗(z))
=
mz − Sc(z) + zA∗(z)(W (z)− T∗(z))

1− z − zW (z)
.
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For ρ0 = 1
2
√
m+1

, we have

T∗(ρ0) =

√
m(2m+ 4

√
m+ 3)

2m+ 3
√
m+ 2

− (2
√
m+ 1)2√
m+ 1

√
m(4m3 + 24m2

√
m+ 60m2 + 84m

√
m+ 70m+ 33

√
m+ 7)

(2
√
m+ 1)4(2m+ 3

√
m+ 2)2

.

and it is also possible to compute A∗(ρ0) and U∗(ρ0). Note that if we substitute 1/y
for

√
m, then yT∗(ρ0), yU∗(ρ0) and yA∗(ρ0) are analytic about y near 0. So we have

series expansions

T∗(ρ0) =
1

2
√
m

− 5

4m
+

17

8m
√
m

+O(
1

m2
),

A∗(ρ0) =
1

4m
− 3

4m
√
m

+O(
1

m2
),

U∗(ρ0) =
√
m− 1

2
√
m

+
1

m
− 11

8m
√
m

+O(
1

m2
).

Then, by Theorem 4.3, if we let γ = limn→∞
[zn]Sc(z)
[zn]W (z) , we have

lim
n→∞

[zn]T∗(z)

[zn]W (z)
=

(T∗(ρ0)− 1/ρ0)(T∗(ρ0) + γ/ρ0)

T∗(ρ0)(1/ρ0 −
√
m) +A∗(ρ0) +

√
m/ρ0 − 1/ρ20 + 1

=
(T∗(ρ0)− 1/ρ0)(T∗(ρ0) + γ/ρ0)

T∗(ρ0)(
√
m+ 1) +A∗(ρ0)−

√
m(2

√
m+ 3)

=
1

m
− 7

2m
√
m

+
31

4m2
+O(

1

m2
√
m
),

which gives a slight improvement from limn→∞
[zn]S1(z)
[zn]W (z) .

To use this method of undetermined coefficients of power series for weak cate-
gories, we need to prove that yT ∗(ρ0), yU∗(ρ0), yA∗(ρ0), yBT ∗(ρ0) and yBA∗(ρ0)
are also analytic about y = 1√

m
near 0. We will prove that our equations have analytic

solutions near y = 0, and there are unique solutions for BT,BA, T, U in a bounded
region for fixed small y, so our analytic solutions match with real solutions that we
want.

First, we will consider the case with arbitrary BT ∗(z) = B∗(z) and BA∗(z) = 0.
The equation U∗(z) = mz − B∗(z) + zU∗(z) + zU∗(z)W (z) is actually equivalent
to

mz −B∗(z) = U∗(z)(1− z − zW (z)) =
mzU∗(z)

W (z)
= mz

(
1− T ∗(z) +A∗(z)

W (z)

)
.

Moreover, it is easy to check that a system of equations

T ∗(z) = B∗(z) + zA∗(z) + z[T ∗(z)W (z) +A∗(z)W (z)−A∗(z)T ∗(z)],

A∗(z) = zT ∗(z) + zA∗(z)T ∗(z),

is actually equivalent to

W (z)B∗(z) = mz(T ∗(z) +A∗(z)),

A∗(z) = zT ∗(z) + zA∗(z)T ∗(z).
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Then, with

ρ0 =
1

2
√
m+ 1

=
y

2 + y
=
y

2
− y2

4
+
y3

8
− y4

16
+ · · · ,

m =
1

y2
,

W (ρ0) =
√
m =

1

y
,

we have the system of equations

T ∗(ρ0) = B∗(ρ0) +
y

y + 2
A∗(ρ0) +

y

y + 2

[
T ∗(ρ0)

y
+
A∗(ρ0)

y
−A∗(ρ0)T

∗(ρ0)

]
,

A∗(ρ0) =
y

y + 2
T ∗(ρ0) +

y

y + 2
A∗(ρ0)T

∗(ρ0),

which is equivalent to

(y + 2)B∗(ρ0) = T ∗(ρ0) +A∗(ρ0),

A∗(ρ0) =
y

y + 2
T ∗(ρ0) +

y

y + 2
A∗(ρ0)T

∗(ρ0).

Note that since B∗, T ∗, A∗ are generating functions, which are bounded by W , the
values of T ∗(ρ0), B∗(ρ0), A∗(ρ0) satisfy yB∗(ρ0), yT ∗(ρ0), yA∗(ρ0) ≤ 1 for each
y = m−1/2 where m is a positive integer. Then, we need to solve

(y + 2)[yB∗(ρ0)] = [yT ∗(ρ0)] + [yA∗(ρ0)],

[yA∗(ρ0)] =
y + [yA∗(ρ0)]

y + 2
[yT ∗(ρ0)].

(1)

in [0, 1]3. Now, assume that we have an equationB∗(z) = Θ(B∗(z), T ∗(z), A∗(z);m, z,W (z)),
and define θ(b, t, a;w) = wΘ(b/w, t/w, a/w; 1

w2 ,
w
w+2 ,

1
w ). Then, we define

λ(b, t, a;w) =

(
θ(b, t, a;w), (w + 2)b− a,

w + a

w + 2
t

)
,

λ̃(b, t, a;w) =

(
θ(b, t, a;w),

b

2
+

(w + 1)a+ (w + 3)t− at

2(w + 2)
,
w + a

w + 2
t

)
.

As we said, the set of fixed points of λ and λ̃ are same. Now, solving our original
system of equations (1) for yB∗(ρ0), yT ∗(ρ0), yA∗(ρ0) is equivalent to finding a fixed
point of λ when w is fixed as y. Assume that we have a unique solution b0, t0, a0 in
{(b, t, a) ∈ C3 | |b|, |t|, |a| ≤ 1} satisfying (b0, t0, a0) = λ(b0, t0, a0; 0), in other
words, a fixed point at w = 0. Since we have a0 = a0t0

2 and t0 = 2b0 − a0, this gives
t0 = 2b0 and a0 = 0. Then, for ϵ > 0, we say D ⊆ C3 is a proper ϵ-region if it
satisfies following:

• D is closed and bounded, i.e., compact.

• D contains an open neighborhood of (b0, t0, a0),

• θ is analytic about w, b, t, a when |w| < ϵ and (b, t, a) ∈ D,

• λ̃(D;w) ⊆ D when |w| < ϵ,
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• if y < ϵ, then every solution (yB∗(ρ0), yT
∗(ρ0), yA

∗(ρ0)) in [0, 1]3 of (1) is in
D.

For the last condition, it is sufficient to show that if (b, t, a) = λ(b, t, a; y) and |b|, |t|, |a| ≤
1, then (b, t, a) ∈ D. Hence, by the analytic implicit function theorem, we will get the
existence of analytic solution when the determinant of the Jacobian

det J1 = det
∂(id − λ)

∂(b, t, a)

is nonzero at (b0, t0, a0) where w = 0, and by the Banach contraction principle, we
will get the uniqueness of the solution for fixed w = y = m−1/2 when the Jacobian

J2 =
∂λ̃

∂(b, t, a)

has norm value less than 1 whenever |w| < ϵ and (b, t, a) ∈ D for some fixed norm.
Here, we are using λ̃ since the Jacobian of λ contains w + 2 entry, which makes hard
to get small norm. By simple computation, we have

det J1(b, t, a;w) =
2 + 2w + a− t

2 + w
−2 + 2w + a− t

2 + w

∂θ

∂b
−(2+w−t)∂θ

∂t
−(a+w)

∂θ

∂a
.

and

J2(b, t, a;w) =


∂θ
∂b

∂θ
∂t

∂θ
∂a

1
2

w+3−a
2(w+2)

w+1−t
2(w+2)

0 w+a
w+2

t
w+2

 .
Moreover, if Θ is a function of A∗ only, then we may reduce the number of variables
by considering

λ̂(a;w) =
w + a

w + 2
((w + 2)θ(a;w)− a) = (w + a)θ(a;w)− a(w + a)

w + 2
,

which gives

Ĵ1(a;w) =
2w + 2a+ 2

w + 2
− aθ′(a; y)− θ(a; y) = 1− Ĵ2(a;w),

Ĵ2(a;w) = aθ′(a;w) + θ(a;w)− w + 2a

w + 2
.

We have free to choose J1 or Ĵ1 to check the existence of analytic solution, and J2
or Ĵ2 to check the uniqueness of solution. Of course, we need to make a variation for
the definition of proper region and choose properly to use Ĵ2. Lastly, for the proper
ϵ-region with ϵ < 1, suppose (b, t, a) is a solution of (b, t, a) = λ(b, t, a;w) satisfying
|b|, |t|, |a| ≤ 1 where |w| < ϵ. A proper ϵ-region must contain every such (b, t, a), and
we want to find ϵ-region as narrow as possible to get uniqueness easily. Note that we
have a = w+a

w+2 t, which gives

|a| =
∣∣∣∣ wt

2 + w − t

∣∣∣∣ ≤ |w||t|
|2 + w| − |t|

≤ ϵ|t|
2− ϵ− |t|

≤ ϵ|t|
1− ϵ

,

so it is reasonable to try to take proper ϵ-region as a subset of {(b, t, a) | |b|, |t|, |a| ≤
1, |a| ≤ ϵ

1−ϵ |t|}.
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Now, consider S1-weak case. We have two choices of Θ(B∗(z), T ∗(z), A∗(z); z,m,W (z)).
One is

Θ(B∗(z), T ∗(z), A∗(z); z,m,W (z)) = mz3−z2B∗(z)+z[B∗(z)W (z)−B∗(z)A∗(z)],

and the other is

Θ(B∗(z), T ∗(z), A∗(z); z,m,W (z)) =
mz3

1 + z2 − zW (z) + zA∗(z)
.

Note that the latter is a function of A∗ only. If we take the latter as our Θ, then we have

θ(b, t, a;w) =
w2

w + 2
· 1

2w2 + 3w + 2 + (w + 2)a
.

Since θ(b, t, 0; 0) = 0 always, so b0 = t0 = a0 = 0 is a unique solution. Now, if
ϵ ≤ 1

8 , |w| < ϵ and |a| ≤ 1
7 , then we have

|θ(b, t, a;w)| ≤ ϵ2

2− |w|
· 1

2− 3|w| − 2|w|2 − |2 + w||a|

≤
1
64

2− 1
8

· 1

2− 3
8 − 2

64 − (2 + 1
8 )

1
7

=
28

4335
.

Hence, if we define

D = {(b, t, a) | |b| ≤ 28

4335
, |t| ≤ 33

35
, |a| ≤ 1

7
},

then D is closed, bounded region containing an open neighborhood of (b0, t0, a0) =
(0, 0, 0). Moreover, if (b, t, a) ∈ D, then

|θ(b, t, a;w)| ≤ 28

4335
,∣∣∣∣ b2 +

(w + 1)a+ (w + 3)t− at

2(w + 2)

∣∣∣∣ ≤ 14

4335
+

(1 + 1
8 )

1
7 + (3 + 1

8 ) +
1
7

2(2− 1
8 )

=
14

4335
+

32

35
≤ 33

35
< 1∣∣∣∣w + a

w + 2
t

∣∣∣∣ ≤ 1
8 + 1

7

2− 1
8

=
1

7
,

and so, λ̃(D;w) ⊆ D. Now, if (b, t, a) = λ(b, t, a;w) and |b|, |t|, |a| ≤ 1, then we
have

|a| ≤ ϵ

1− ϵ
|t| ≤ 1

7
,

|b| = |θ(b, t, a;w)| ≤ 28

4335
,

|t| =
∣∣∣∣ b2 +

(w + 1)a+ (w + 3)t− at

2(w + 2)

∣∣∣∣ ≤ 33

35
,

and so, (b, t, a) ∈ D. Thus, D is a proper ϵ-region. Note that we may choose smaller
D. For example, from |t| ≤ 33

35 , we may get |a| ≤ 33
7·35 and from this bound of a,

we can get smaller bounds for t and θ(b, t, a;w). Hence, we may repeat this bootstrap
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process to make D smaller and smaller. Lastly, we will consider Jacobians. We will
choose J1, J2 rather than Ĵ1 and Ĵ2. By direct computation, we have

det J1(b, t, a;w) =
2 + 2w + a− t

2 + w
+ (w + a)

w2

w + 2
· w + 2

(2w2 + 3w + 2 + (w + 2)a)2
,

J2(b, t, a;w) =


0 0 − w2

(2w2+3w+2+(w+2)a)2

1
2

w+3−a
2(w+2)

w+1−t
2(w+2)

0 w+a
w+2

t
w+2

 .
First, det J1(0, 0, 0; 0) = 1 ̸= 0, so we have local analytic solution about w from the
analytic implicit function theorem. Then, for the (1,3)-entry of J2, we have

|(J2)13| ≤
ϵ2

(2− 3|w| − 2|w|2 − |2 + ϵ||a|)2
≤

1
82(

2− 3
8 − 2

64 −
(
2 + 1

8

)
1
7

)2 =

(
28

289

)2

,

when |w| < ϵ ≤ 1
8 and (b, t, a) ∈ D. Now, the sum of the absolute values of the second

column is bounded by

ϵ+ 3 + |a|
2(2− ϵ)

+
ϵ+ |a|
2− ϵ

=
3(ϵ+ |a|+ 1)

2(2− ϵ)

and of the third column is bounded by(
28

289

)2

+
ϵ+ 1 + |t|
2(2− ϵ)

+
|t|

2− ϵ
=

(
28

289

)2

+
ϵ+ 3|t|+ 1

2(2− ϵ)
.

Here, both of them become less than 1 as ϵ → 0, so there is ϵ0 ≤ 1
8 such that w <

ϵ0 implies ∥J2∥∞ < 1. Hence, by the Banach contraction principle, we have the
uniqueness of the solution for each such w, so values of the local analytic solution
must match to true values of yB∗(ρ0), yT ∗(ρ0) and yA∗(ρ0). Then, yW (ρ0) = 1 and
yU∗(ρ0) = yW (ρ0)− yT ∗(ρ0)− yA∗(ρ0), so it is also true for yU∗(ρ0).

From this result, we may assume

B∗(ρ0) =
b−1

y
+ b0 + b1y + b2y

2 + · · · ,

T ∗(ρ0) =
t−1

y
+ t0 + t1y + t2y

2 + · · · ,

U∗(ρ0) =
u−1

y
+ u0 + u1y + u2y

2 + · · · ,

A∗(ρ0) =
a−1

y
+ a0 + a1y + a2y

2 + · · · ,

where b−1, t−1, u−1, a−1 ≥ 0, since we are considering generating functions. Then,
we have a system of quadratic equations

B∗(z) = mz3 − z2B∗(z) + z[B∗(z)W (z)−B∗(z)A∗(z)],

T ∗(z) = B∗(z) + zA∗(z) + z[T ∗(z)W (z) +A∗(z)W (z)−A∗(z)T ∗(z)],

U∗(z) = mz −B∗(z) + zU∗(z) + zU∗(z)W (z),

A∗(z) = zT ∗(z) + zA∗(z)T ∗(z),
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and if we write this equation in terms of y, we will get

B∗(ρ0) =
y

(2 + y)3
− y2

(2 + y)2
B∗(ρ0) +

1

2 + y
B∗(ρ0)−

y

2 + y
B∗(ρ0)A

∗(ρ0),

T ∗(ρ0) = B∗(ρ0) +
y

2 + y
A∗(x) +

1

2 + y
T ∗(ρ0) +

1

2 + y
A∗(ρ0)−

y

2 + y
A∗(ρ0)T

∗(ρ0),

U∗(ρ0) =
1

y(2 + y)
−B∗(ρ0) +

y

2 + y
U∗(ρ0) +

1

2 + y
U∗(ρ0),

A∗(ρ0) =
y

2 + y
T ∗(ρ0) +

y

2 + y
A∗(ρ0)T

∗(ρ0).

Then, the method of undetermined coefficients gives

B∗(ρ0) =
1

4
√
m

− 1

2m
+

9

16m
√
m

+O(
1

m2
),

T ∗(ρ0) =
1

2
√
m

− 1

m
+

5

4m
√
m

+O(
1

m2
),

U∗(ρ0) =
√
m− 1

2
√
m

+
3

4m
− 5

8m
√
m

+O(
1

m2
),

A∗(ρ0) =
1

4m
− 5

8m
√
m

+O(
1

m2
).

Now, by Theorem 4.3 again, we have

lim
n→∞

[zn]B∗(z)

[zn]W (z)
=

1

4m
− 3

4m
√
m

+
9

8m2
+O(

1

m2
√
m
),

lim
n→∞

[zn]T ∗(z)

[zn]W (z)
=

1

m
− 5

2m
√
m

+
29

8m2
+O(

1

m2
√
m
).

This is a the asymptotic density of weak tautologies from simple tautologies, so is
a lower bound of the density of tautologies. Also, we may define second kind of simple
tautologies as tautologies of ψ1, · · · , ψk+1 7→ ψk+2 form where

• ψk+2 is not η1 → η2 form,

• there exists distinct i, j ≤ k + 1 such that ψi = p and ψj = ¬p.

Even we introduce this new class of tautologies, from Proposition 5.3 and Proposi-
tion 5.5, since all simple tautologies of the second kind have ¬ symbol in it, we expect
that this does not change the 1√

m
order term of T ∗(ρ0), but it will give an improvement

on the 1
m order term. Hence, it will not change the 1

m order term of ratio, but it will
give an improvement on the 1

m
√
m

order term of it. Let S2 be the set of second kind
simple tautologies.

We have to start from finding the basis of S1 ∪ S2. Let us consider weak sense cat-
egories, and use simple notations B, T, U,A for generating functions of basis, tautolo-
gies, unknowns, and antilogies, respectively. A well-formed formula ψ1, · · · , ψk−1 7→
ψk such that ψk is a variable or ¬η for a well-formed formula η is (S1 ∪ S2)-basic if
and only if one of the following is true.

• First, k ≥ 2, and there is a variable p such that ψ1, ψk are p, ψ2, · · · , ψk−1 are
not p, and ψ2, · · · , ψk−1 are not (S1 ∪ S2)-antilogies.
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• There is a variable p and i < k such that ψ1 is p, ψi is ¬p, ψk is not p, ψk
is not ¬η for an (S1 ∪ S2)-antilogy η, and for any 1 < j < k, ψj is not an
(S1 ∪ S2)-antilogy nor p.

• There is a variable p and i < k such that ψ1 is ¬p, ψi is p, ψk is not p, ψk
is not ¬η for an (S1 ∪ S2)-antilogy η, and for any 1 < j < k, ψj is not an
(S1 ∪ S2)-antilogy nor ¬p.

Also, these three conditions are pairwise disjoint. The generating function for the first
case is

mz3

1− z[W (z)− z −A(z)]
,

for the second case is

mz2
(
(m− 1)z + z[W (z)−A(z)]

1− z[W (z)− z −A(z)]
− (m− 1)z + z[W (z)−A(z)]

1− z[W (z)− z − z2 −A(z)]

)
,

and for the third case is

mz3
(
(m− 1)z + z[W (z)−A(z)]

1− z[W (z)− z2 −A(z)]
− (m− 1)z + z[W (z)−A(z)]

1− z[W (z)− z − z2 −A(z)]

)
.

Deducing these formulae is similar to the proof of Proposition 5.8.(a). To apply the
method to compute the density of weak tautologies from the S1 case, we have to
consider the existence of proper region D. If Θ is a function of only A∗(z) and
θ(b, t, 0; 0) = 0, then to prove the existence of proper region D, it is enough to choose
ϵ > 0 such that there exists δ > 0 satisfies

• if |w| < ϵ and |a| ≤ ϵ
1−ϵ , then |θ(b, t, a;w)| ≤ δ, and

• δ
2 + 3

2(2−ϵ)(1−ϵ) ≤ 1.

If these conditions are satisfied, then D = {(b, t, a) | |b| ≤ δ, |t| ≤ 1, |a| ≤
ϵ

1−ϵ} will be a proper ϵ-region. Then, we may compute Jacobians and check whether
det J1(0, 0, 0; 0) is nonzero and a norm of J2 is less than 1, where we may reduce D
by bootstrap argument and ϵ freely, if is needed. By direct computation, we can show
θ(b, t, 0; 0) = 0 is really true for this case either, and hence, other process to prove
analyticity is almost automatic.

After we get the analyticity, we have to consider a system of quadratic equations
including the generating function of the basis. We have the following system of equa-
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tions.

B1(z) =mz
3 − z2B1(z) + z(W (z)B1(z)−A(z)B1(z)),

B2(z) =m(m− 1)z3 +mz3[W (z)−A(z)]− z2B2(z)

+ z[W (z)B2(z)−A(z)B2(z)],

B3(z) =m(m− 1)z3 +mz3[W (z)−A(z)]− (z2 + z3)B3(z)

+ z[W (z)B3(z)−A(z)B3(z)],

B4(z) =m(m− 1)z4 +mz4[W (z)−A(z)]− z3B4(z)

+ z[W (z)B4(z)−A(z)B4(z)],

B5(z) =m(m− 1)z4 +mz4[W (z)−A(z)]− (z2 + z3)B5(z)

+ z[W (z)B5(z)−A(z)B5(z)],

B(z) =B1(z) +B2(z)−B3(z) +B4(z)−B5(z),

T (z) =B(z) + zA(z) + z(T (z)W (z) +A(z)W (z)−A(z)T (z)),

U(z) =mz −B(z) + zU(z) + zU(z)W (z),

A(z) =zT (z) + zA(z)T (z).

From this system of equations, we have series solutions

B1(ρ0) =
1

4
√
m

− 1

2m
+

9

16m
√
m

+O(
1

m2
),

B2(ρ0) =

√
m

4
− 1

4
− 3

16
√
m

+
5

8m
− 47

64m
√
m

+O(
1

m2
),

B3(ρ0) =

√
m

4
− 1

4
− 3

16
√
m

+
9

16m
− 35

64m
√
m

+O(
1

m2
),

B4(ρ0) =
1

8
− 3

16
√
m

+
1

16m
+

3

32m
√
m

+O(
1

m2
),

B5(ρ0) =
1

8
− 3

16
√
m

+
9

32m
√
m

+O(
1

m2
),

B(ρ0) =
1

4
√
m

− 3

8m
+

3

16m
√
m

+O(
1

m2
),

T (ρ0) =
1

2
√
m

− 3

4m
+

1

2m
√
m

+O(
1

m2
),

U(ρ0) =
√
m− 1

2
√
m

+
1

2m
+O(

1

m2
),

A(ρ0) =
1

4m
− 1

2m
√
m

+O(
1

m2
),
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and by Theorem 4.3, we get

lim
n→∞

[zn]B(z)

[zn]W (z)
=

1

4m
− 1

2m
√
m

+
5

16m2
+O(

1

m2
√
m
),

lim
n→∞

[zn]T (z)

[zn]W (z)
=

1

m
− 7

4m
√
m

+
5

4m2
+O(

1

m2
√
m
),

lim
n→∞

[zn]U(z)

[zn]W (z)
= 1− 1

m
+

5

4m
√
m

− 1

8m2
+O(

1

m2
√
m
),

lim
n→∞

[zn]A(z)

[zn]W (z)
=

1

2m
√
m

− 9

8m2
+O(

1

m2
√
m
).

This result shows an improvement for the 1
m

√
m

order term but not or the 1
m order term,

as we expected.
For the upper bound of the density, we have a natural upper bound

1− lim
n→∞

[zn]A(z)

[zn]W (z)

which gives

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≤ 1− 1

2m
√
m

+
9

8m2
+O(

1

m2
√
m
).

We may improve the upper bound slightly by dividing the class unknowns into un-
knowns and not tautologies nor antilogies. In such partitioning, B-tautologies and
B-antilogies are not changed, and by same argument, we may compute, with proper
analyticity assumption, the density of not tautologies nor antilogies has lower bound

1

4m
− 5

16m
√
m

+
5

32m2
+O(

1

m2
√
m
),

and this gives an upper bound

1− 1

4m
− 3

16m
√
m

+
31

32m2
+O(

1

m2
√
m
).

But this upper bound is still too far from the lower bound. So we need some different
approach.

Here, since the set of tautologies is ∩v∈VAT
v , the minimum density of T v among

every truth assignment v gives an upper bound. By symmetry, it only depends on the
number of variable assigned as true. Suppose v has m − k true variables and k false
variables. Then, the generating function F for false well-formed formulae satisfies the
following equation.

F (z) = kz + z(W (z)− F (z)) + z(W (z)− F (z))F (z).

Hence, we have

F (z) =
−1− z + zW (z) +

√
(1 + z − zW (z))2 + 4z2(k +W (z))

2z
.

By the Szegő lemma, we have

lim
n→∞

[zn]F (z)

[zn]W (z)
=

1

2
−

√
m

2
√
m+ 6

√
m+ 4k + 4
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so it gives

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≤ 1

2
+

√
m

2
√
m+ 6

√
m+ 4k + 4

.

Thus, if we set k = m, then we get

lim
n→∞

[zn]W∅(z)

[zn]W (z)
≤ 1

2
+

√
m

2
√
5m+ 6

√
m+ 4

=

√
5 + 1

2
√
5

− 3

10
√
5m

+
7

100
√
5m

+O(
1

m
√
m
).

This upper bound is still not satisfactory, but it successfully decreases the highest term.
As a result, the density of tautology has

1

m
+O(

1

m
√
m
) ≤ lim

n→∞

[zn]W∅(z)

[zn]W (z)
≤

√
5 + 1

2
√
5

+O(
1√
m
)

as asymptotic behaviors, where the lower bound is conjectured as tight. This is the
remaining problem about the asymptotic behavior.

Of course, we have remaining problems for other sections, too. For the Section 3,
we could compute the density of the tautologies in the propositional logic system with
m variables, negation, and implication for the case m = 2, 3, 4; and our method can
be easily applied to other logical symbols, but for the case m ≤ 4 or 5. The mod-
ern computation power is not enough for large m ≥ 6. Here, the complexity of the
exact algebraic formula is essential, so the limitation to getting the exact algebraic for-
mula is unavoidable. But there is still a chance to find a realistic method to compute
approximate values that is close to the real value as we want.

For the Section 4, we suggested some conditions under which the s-cut concept
works, but it is not universal and hard to check if they are satisfied. We practically
verified the result, but it is not proved satisfactorily. Hence, we will ask to find better
conditions that when shifted s-cut operators are guaranteed to have the Jacobian less
than 1, and rigorous proof that s-cut solutions give a better approximation than the raw
ratios in most cases.

This work was partially supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1062462).
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