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Simplicial Complex

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed
under taking subsets.
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Simplicial Complex

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed
under taking subsets.

Embeddability

Every d-dimensional complex can be embedded in to the R29+1

Unique Embedding

For an abstract simplicial complex, every embeddings are
homeomorphic.

Independence complex, Clique complex, Nerve complex, . ..
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Independence complex of a cycle
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Independence complex of a cycle
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Independence complex of a cycle

Taehyun Eom Domination numbers and homotopy 4/19



From Kalai, Meshulam and Engstrém

Ternary graph
A graph is ternary if it has no induced cycles of length 0 modulo 3.
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From Kalai, Meshulam and Engstrom

Ternary graph
A graph is ternary if it has no induced cycles of length 0 modulo 3.

x(/(G)) for ternary graphs (Chudnovsky, Scott, Seymour and

Splrkl, 2020)

For a ternary graph G, ‘ZA:indep(—l)W’ <1

Betti numbers of ternary graphs (Zhang and Wu, 2025, Arxiv 2020)

For a ternary graph G, the sum of reduced Betti number of /(G) is
at most 1.

Homotopy type of the ternary graph (J. Kim, 2022)

A graph G is ternary iff /(H) is either contractible or homotopy
equivalent to a sphere for every induced subgraph H of G.
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For a ternary graph G with non-contractible /(G), what is the
dimension d(G) of sphere S¢ ~ I(G)?
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For a ternary graph G with non-contractible /(G), what is the
dimension d(G) of sphere S¢ ~ I(G)?

Known Result (Marietti and Testa, 2008)
For a forest F, if I(F) is not contractible, then

d(F)=~(F)-1=i(F)-1

where ~v(F) is the domination number and i(F) is the independent
domination number of F.
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For a ternary graph G with non-contractible /(G), what is the
dimension d(G) of sphere S¢ ~ I(G)?

Known Result (Marietti and Testa, 2008)
For a forest F, if I(F) is not contractible, then

d(F)=~(F)-1=i(F)-1

where ~v(F) is the domination number and i(F) is the independent
domination number of F.

This result is also true for Cg, Gg,. .., but not for G4, C7,. . ..
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(0, 1)-ternary graph

A graph is (0, 1)-ternary if it has no induced cycles of length 0
modulo 3 and no induced cycle of length 1 modulo 3.
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(0, 1)-ternary graph

A graph is (0, 1)-ternary if it has no induced cycles of length 0
modulo 3 and no induced cycle of length 1 modulo 3.

E., Kim, Kim, 2025, preprint
e For a (0,1)-ternary graph G, if /(G) is not contractible, then

d(G) = (6) = 1=i(G) — 1 = 4(L(G)) — 1

where L(G) is the line graph of G.

Taehyun Eom Domination numbers and homotopy 7/19



(0, 1)-ternary graph

A graph is (0, 1)-ternary if it has no induced cycles of length 0
modulo 3 and no induced cycle of length 1 modulo 3.

E., Kim, Kim, 2025, preprint
e For a (0,1)-ternary graph G, if /(G) is not contractible, then

d(G) = (6) = 1=i(G) — 1 = 4(L(G)) — 1

where L(G) is the line graph of G.

e For a (0,1)-ternary hypergraph H, if /(H) is not contractible,
then d(H) = ~(H) — 1.
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Sketch of the proof

d(G) < (L(G)) —1 < +(G) —1 < i(G) — 1 < d(G)
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Sketch of the proof

d(G) < (L(G)) —1 < +(G) —1 < i(G) — 1 < d(G)

Graph point of view, Ha and Woodroofe, 2014

d(G) <reg(R/l) —1 < ~(L(G)) -1
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Sketch of the proof

d(G) < (L(G)) —1 < +(G) —1 < i(G) — 1 < d(G)

Graph point of view, Ha and Woodroofe, 2014

d(G) <reg(R/I) -1 < y(L(G)) — 1

For a (0, 1)-ternary graph G, v(L(G)) < v(G)

@ For a connected (0, 1)-ternary graph G, there exists a vertex v
such that /(G — v) > i(G).

e For a (0, 1)-ternary graph G, if /(G) is not contractible, then
i(G) —1<d(G).

Taehyun Eom Domination numbers and homotopy 8/19



Structure of (0, 1)-ternary graphs. Part 0

Without inducedness

A graph G is (0, 1)-ternary if and only if G has no cycles of length
0 or 1 modulo 3.
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Structure of (0, 1)-ternary graphs. Part 1

Forbidden Minor

A (0, 1)-ternary graph is Ks-(topological)-minor free.
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Structure of (0, 1)-ternary graphs. Part 1

Forbidden Minor

A (0, 1)-ternary graph is Ks-(topological)-minor free.

ANA
AL

This is generally true for any graph G such that every cycle of
length k(# 0) modulo m
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Structure of (0, 1)-ternary graphs. Part 2

2-connected and ear-decomposition

For a 2-connected (0, 1)-ternary graph G and its ear-decomposition
sequence Gp < Gy < --- < G, = G, let u, v be two endpoints of
the last ear E.

@ Every path connecting v and v has length 1 modulo 3.

@ u and v are lying on the same ear in Gx_1.
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Structure of (0, 1)-ternary graphs. Part 2

2-connected and ear-decomposition

For a 2-connected (0, 1)-ternary graph G and its ear-decomposition
sequence Gp < Gy < --- < G, = G, let u, v be two endpoints of
the last ear E.

@ Every path connecting v and v has length 1 modulo 3.

@ u and v are lying on the same ear in Gx_1.

Since G is 2-connected, there exists two paths P, P’ connecting u
and v in G,_1. Since PUE, PPUE and P U P’ have length 2
modulo 3, P, P’ and E have length 1 modulo 3.
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Structure of (0, 1)-ternary graphs. Part 2

2-connected and ear-decomposition

For a 2-connected (0, 1)-ternary graph G and its ear-decomposition
sequence Gp < Gy < --- < G, = G, let u, v be two endpoints of
the last ear E.

@ Every path connecting v and v has length 1 modulo 3.

@ u and v are lying on the same ear in Gx_1.

Y
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Structure of minimum independent dominating sets
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Structure of minimum independent dominating sets

The number of vertices is 3k + 2, and its independent domination
number is k + 1.
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Structure of minimum independent dominating sets

The number of vertices is 3k + 2, and its independent domination
number is k + 1.
o If both endpoints are not in a minimum size independent
dominating set, then one path has pattern L--- L(LR)R--- R
and others have M --- M.
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Structure of minimum independent dominating sets

The number of vertices is 3k + 2, and its independent domination
number is k + 1.
@ If the right endpoint is in a minimum size independent

domination set, then there is a path with pattern L--- L and
others have M---ML--- L.
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Structure of minimum independent dominating sets

The number of vertices is 3k + 2, and its independent domination
number is k + 1.

@ Both endpoints cannot be included in a minimum size
independent dominating set simultaneously.
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Structure of minimum independent dominating sets

Nice Cycle
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Structure of minimum independent dominating sets

Nice Cycle

Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.
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Let G be a 2-connected (0,1)-ternary graph.
0 i(G) = M,
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Structure of minimum independent dominating sets

Nice Cycle

Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.
. _|V(G)|+1
° i(G)="—5—.
@ For a minimum independent dominating set / and u,v € /,

there exists a path connecting v and v with length 0 or 2
modulo 3.
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Structure of minimum independent dominating sets

Nice Cycle

Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.
0 i(G) = M,

@ For a minimum independent dominating set / and u,v € /,
there exists a path connecting v and v with length 0 or 2
modulo 3.

e Forany v e V(G), i(G—v)>i(G).
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Structure of minimum independent dominating sets

Existence of a special vertex

For a connected (0,1)-ternary graph G, there exists a vertex v with
i(G—v)>i(G).
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Structure of minimum independent dominating sets

Existence of a special vertex

For a connected (0,1)-ternary graph G, there exists a vertex v with
i(G—v)>i(G).

For (0,1)-ternary graph which is not 2-connected, we may choose v
as the cut vertex of a leaf block of the block-cut tree of G.
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Structure of minimum independent dominating sets

Existence of a special vertex

For a connected (0,1)-ternary graph G, there exists a vertex v with
i(G—v)>i(G).

For (0,1)-ternary graph which is not 2-connected, we may choose v
as the cut vertex of a leaf block of the block-cut tree of G.

Independent domination number vs Sphere dimension

For a (0,1)-ternary graph G, if /(G) is not contractible, then

i(G) — 1< d(G).

This uses a Mayer-Vietoris argument based on G — v and G — N(v)
to prove Hs(/(G)) =0 for s < i(G) — 2.
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Edge domination number

Domination number vs Edge domination number

For a (0,1)-ternary graph G,

1(L(G)) <(6).

Sketch of the proof) Generally, for a (0,1)-ternary graph G and a
minimum size dominating set W, there exists W’ C W and edges
e1, -, €| where each e; attaches to a vertex in W’ such that

W\ W' with ey, --- , ¢y dominates edges.
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e1, -, €| where each e; attaches to a vertex in W’ such that

W\ W' with ey, --- , ¢y dominates edges.

° Y(L(G)) <A(L(G) —{ew, -, qu}) + W,
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Edge domination number

Domination number vs Edge domination number

For a (0,1)-ternary graph G,

1(L(G)) <(6).

Sketch of the proof) Generally, for a (0,1)-ternary graph G and a
minimum size dominating set W, there exists W’ C W and edges
e1, -, €| where each e; attaches to a vertex in W’ such that
W\ W' with ey, --- , ¢y dominates edges.

o Y(L(G)) <(L(G) —{er,--- ,qwr}) + [W.

o Y(L(G) ~ {er, -+, awr}) < (G)) < [W| — W,
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Edge domination number

Domination number vs Edge domination number

For a (0,1)-ternary graph G,

1(L(G)) <(6).

Sketch of the proof) Generally, for a (0,1)-ternary graph G and a
minimum size dominating set W, there exists W’ C W and edges
e1, -, €| where each e; attaches to a vertex in W’ such that
W\ W' with ey, --- , ¢y dominates edges.

o Y(L(G)) <(L(G) —{er,--- ,qwr}) + [W.

° Y(L(G) —{er, -, qur}) < (G') < [W[— W'

o Y(L(G)) < [W|— [W'|+ [W'| = [W]| =~(G).
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With cycles of length 1 modulo 3

3k — 1 consecutive induced 4.
o /(o) ~ S2k1
o 7(#) = i(s) = 3k
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With cycles of length 1 modulo 3

Connected G4 by path of length 2
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With cycles of length 1 modulo 3

Connected G4 by path of length 2

For the case with 3k induced G4
o (o) ~ S4k-1
o y(e) = i(e) = [¥]
o v(L(e)) =6k
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Further questions

Remaining problems

@ Is there any other parameter to represent the d(G), which
explains cases with length 1 modulo 3 cycles?

o 29(6) < d(G) +1 < 1(6)?
o If v(G) # i(G), then I(G) is contractible?
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The end.
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