

Domination numbers and homotopy in certain ternary graphs

Taehyun Eom

joint work with
Jinha Kim and Minki Kim

January 29, 2026

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed under taking subsets.

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed under taking subsets.

Embeddability

An abstract simplicial complex \mathcal{F} can be embedded in to the $\mathbb{R}^{2 \cdot \max\{|F| : F \in \mathcal{F}\} - 1}$

Unique Embedding

For an abstract simplicial complex, every embeddings are homeomorphic.

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed under taking subsets.

Embeddability

Every d -dimensional complex can be embedded in to the \mathbb{R}^{2d+1}

Unique Embedding

For an abstract simplicial complex, every embeddings are homeomorphic.

Abstract simplicial complex

An abstract simplicial complex is a finite family of finite sets closed under taking subsets.

Embeddability

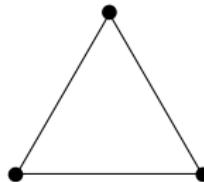
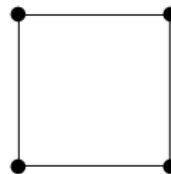
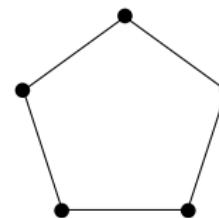
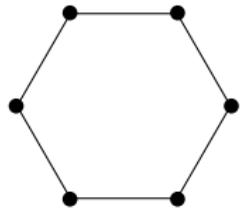
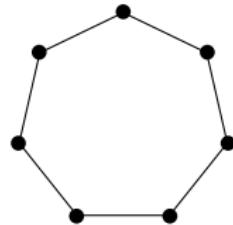
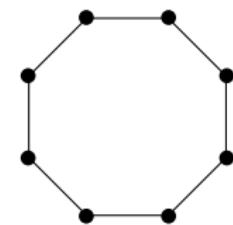
Every d -dimensional complex can be embedded in to the \mathbb{R}^{2d+1}

Unique Embedding

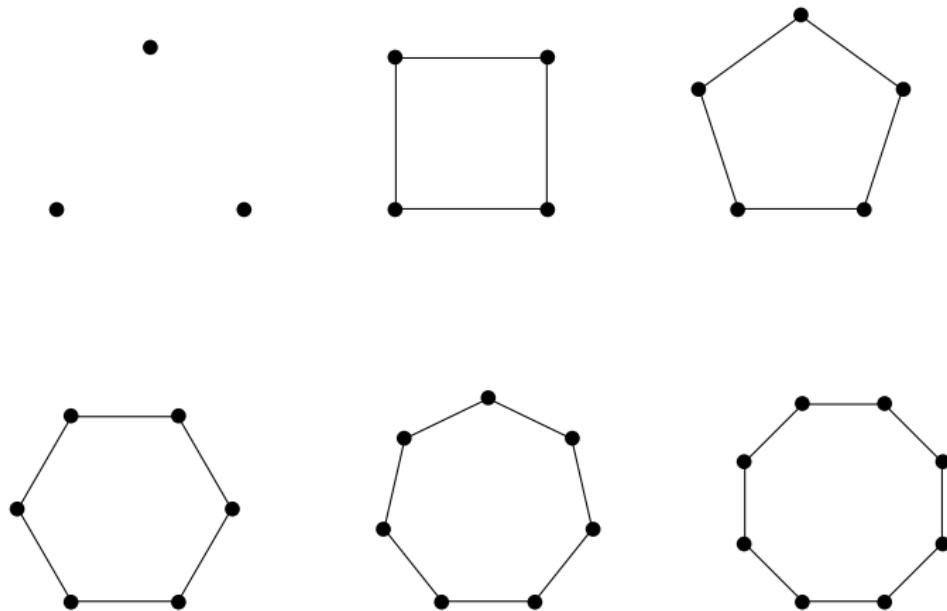
For an abstract simplicial complex, every embeddings are homeomorphic.

Independence complex, Clique complex, Nerve complex, ...

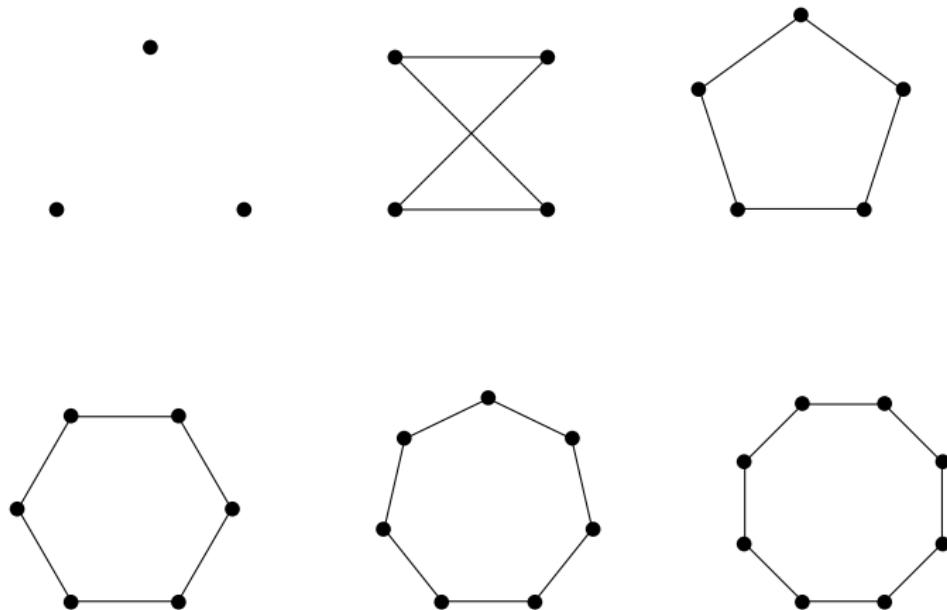
Independence complex of a cycle



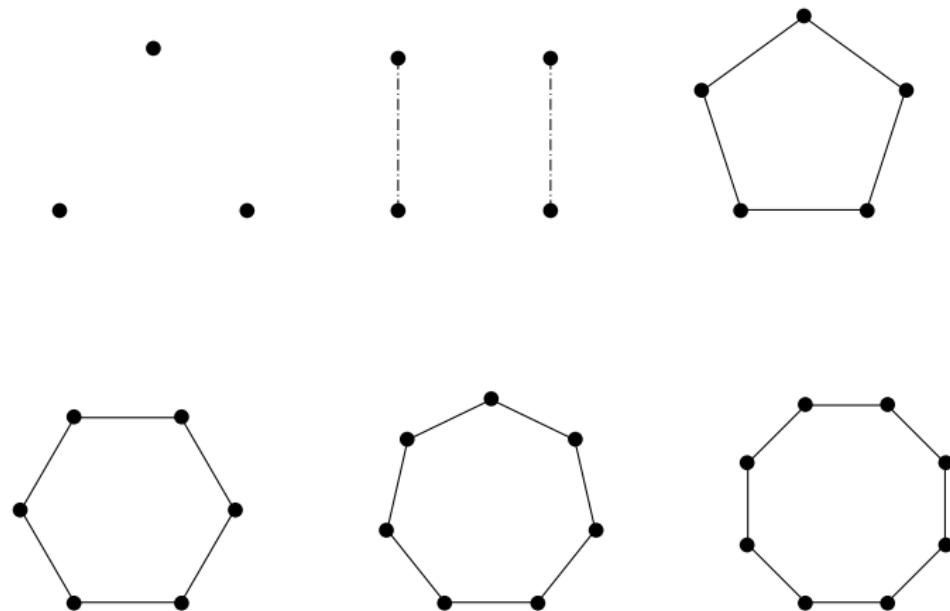
Independence complex of a cycle



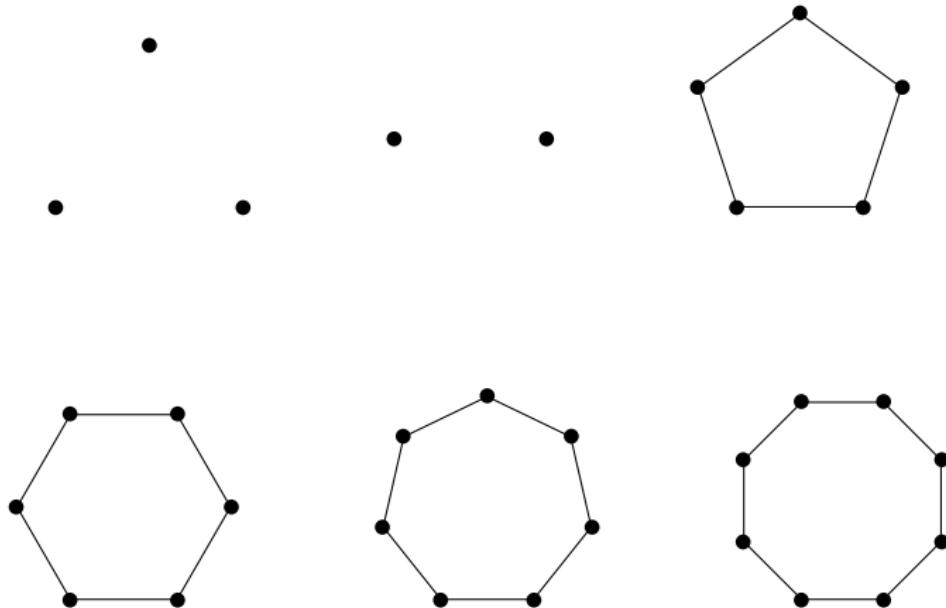
Independence complex of a cycle



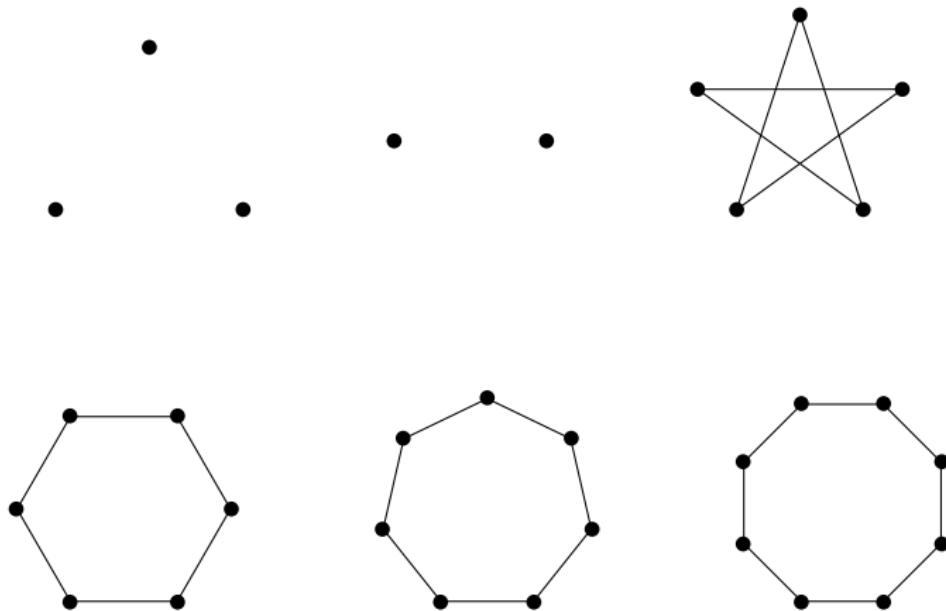
Independence complex of a cycle



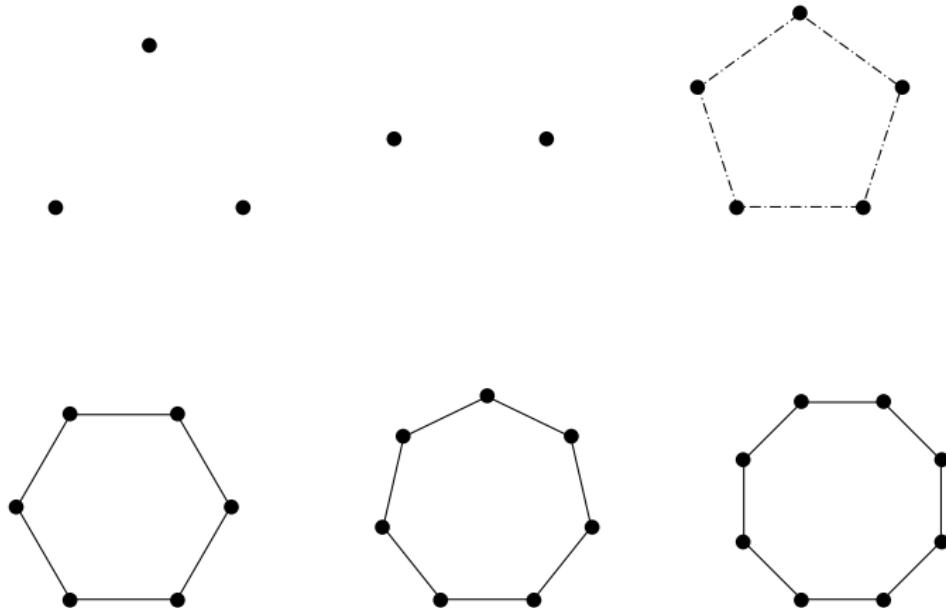
Independence complex of a cycle



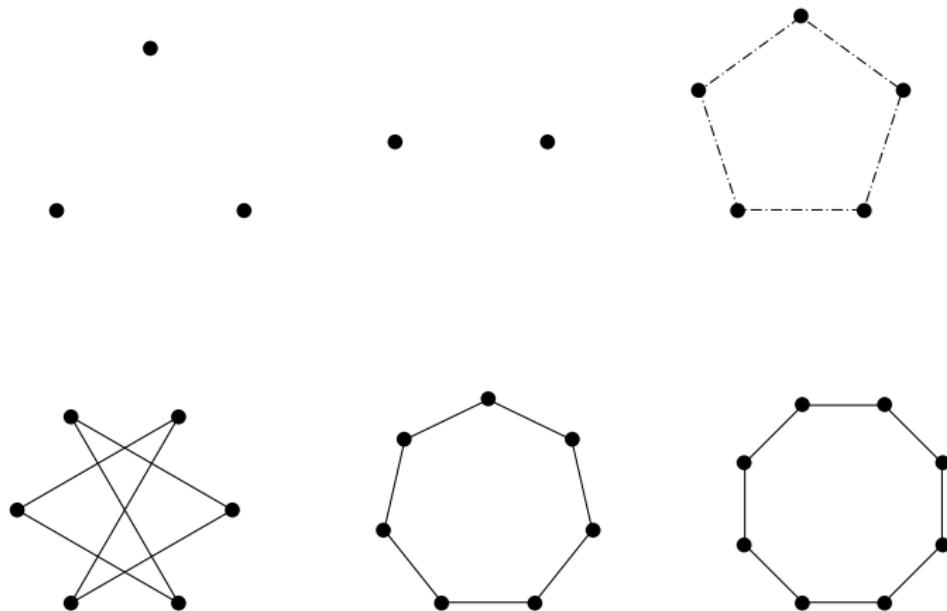
Independence complex of a cycle



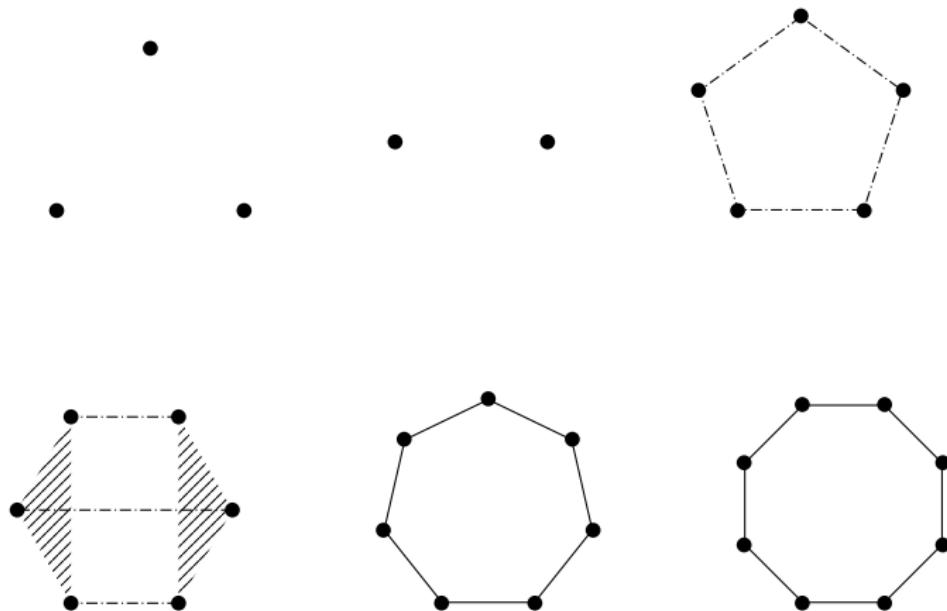
Independence complex of a cycle



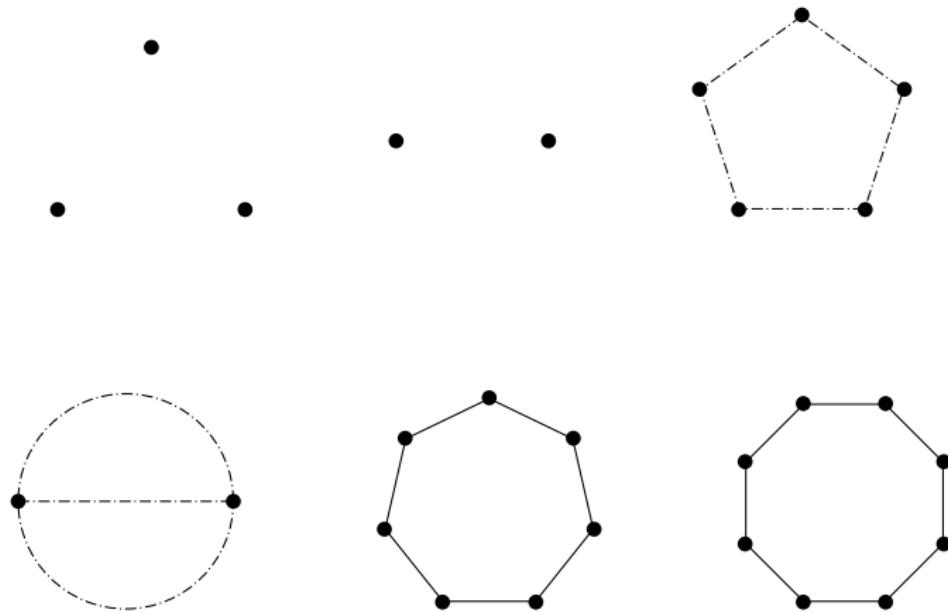
Independence complex of a cycle



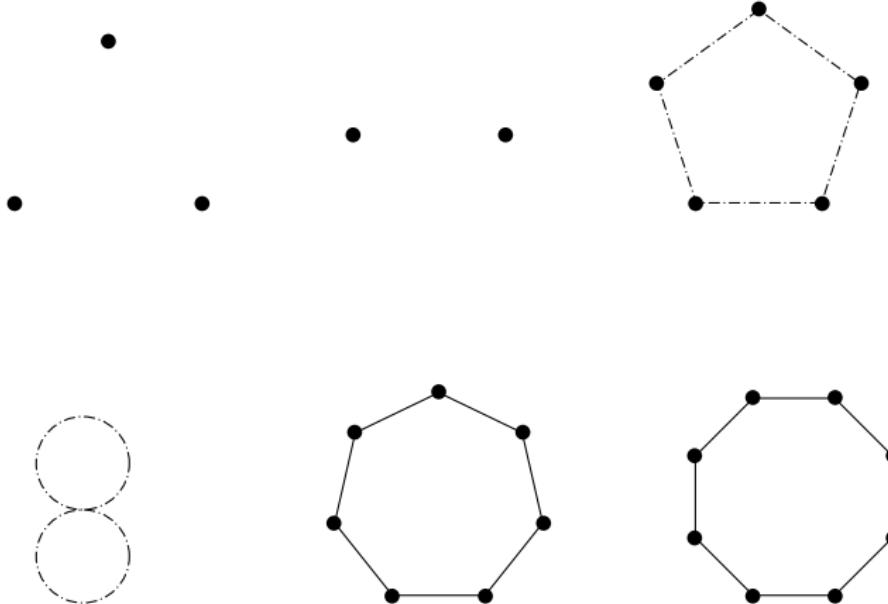
Independence complex of a cycle



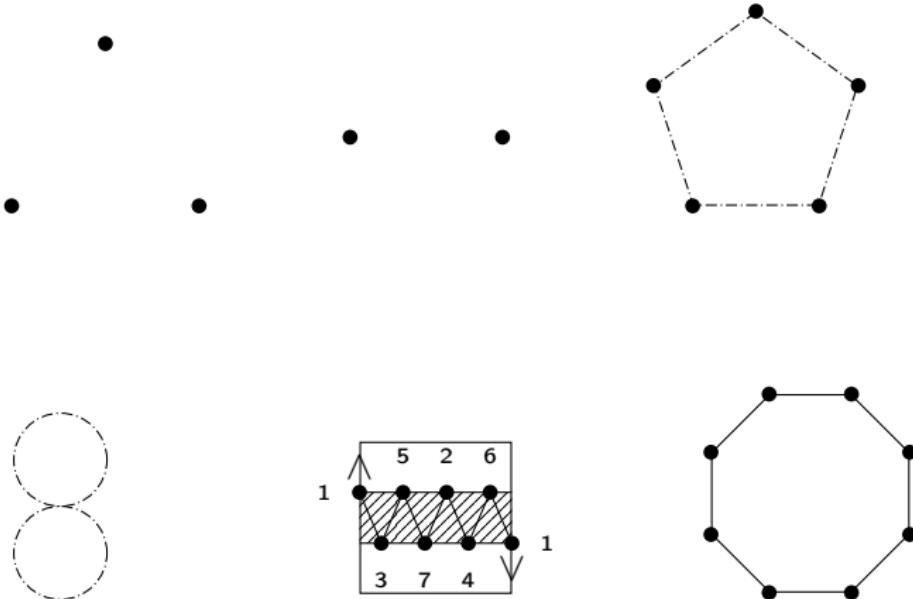
Independence complex of a cycle



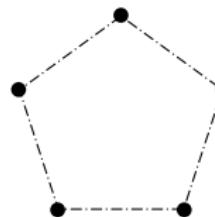
Independence complex of a cycle



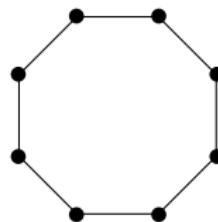
Independence complex of a cycle



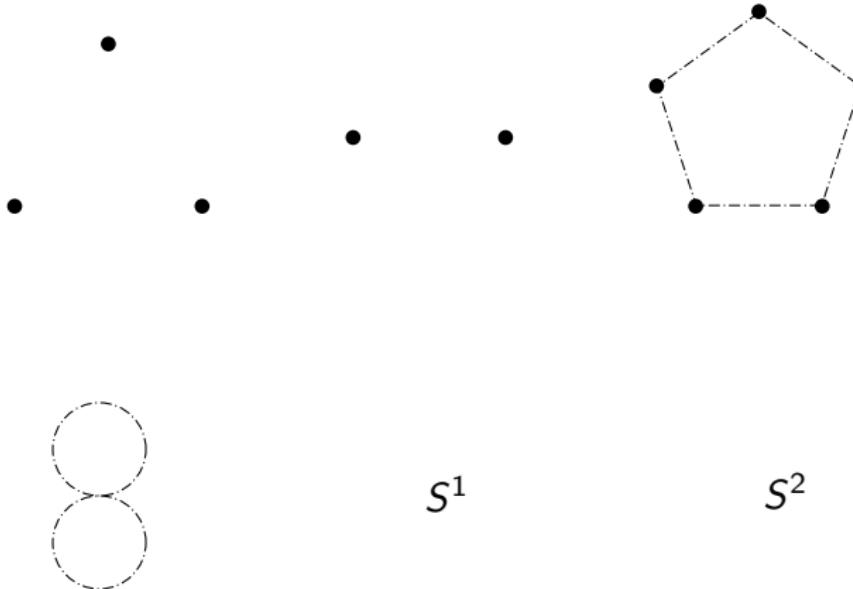
Independence complex of a cycle



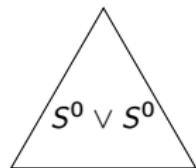
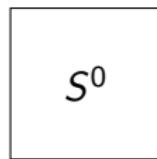
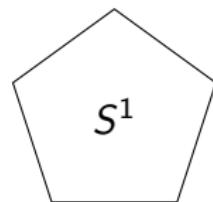
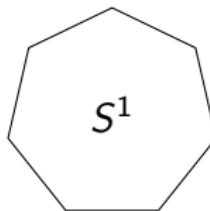
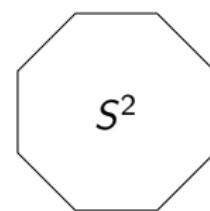
$$S^1$$



Independence complex of a cycle



Independence complex of a cycle



Ternary graph

A graph is **ternary** if it has no induced cycles of length 0 modulo 3.

Ternary graph

A graph is **ternary** if it has no induced cycles of length 0 modulo 3.

$\chi(I(G))$ for ternary graphs (Chudnovsky, Scott, Seymour and Spirkl, 2020)

For a ternary graph G , $\left| \sum_{A:\text{indep}} (-1)^{|A|} \right| \leq 1$

Betti numbers of ternary graphs (Zhang and Wu, 2025, Arxiv 2020)

For a ternary graph G , the sum of reduced Betti number of $I(G)$ is at most 1.

Homotopy type of the ternary graph (J. Kim, 2022)

A graph G is ternary iff $I(H)$ is either contractible or homotopy equivalent to a sphere for every induced subgraph H of G .

Question

For a ternary graph G with non-contractible $I(G)$, what is the dimension $d(G)$ of sphere $S^d \simeq I(G)$?

Question

For a ternary graph G with non-contractible $I(G)$, what is the dimension $d(G)$ of sphere $S^d \simeq I(G)$?

Known Result (Marietti and Testa, 2008)

For a forest F , if $I(F)$ is not contractible, then

$$d(F) = \gamma(F) - 1 = i(F) - 1$$

where $\gamma(F)$ is the domination number and $i(F)$ is the independent domination number of F .

Question

For a ternary graph G with non-contractible $I(G)$, what is the dimension $d(G)$ of sphere $S^d \simeq I(G)$?

Known Result (Marietti and Testa, 2008)

For a forest F , if $I(F)$ is not contractible, then

$$d(F) = \gamma(F) - 1 = i(F) - 1$$

where $\gamma(F)$ is the domination number and $i(F)$ is the independent domination number of F .

This result is also true for C_5, C_8, \dots , but not for C_4, C_7, \dots

$(0, 1)$ -ternary graph

A graph is $(0, 1)$ -**ternary** if it has no induced cycles of length 0 modulo 3 and no induced cycle of length 1 modulo 3.

$(0, 1)$ -ternary graph

A graph is **$(0, 1)$ -ternary** if it has no induced cycles of length 0 modulo 3 and no induced cycle of length 1 modulo 3.

E., Kim, Kim, 2025, *preprint*

- For a $(0,1)$ -ternary graph G , if $I(G)$ is not contractible, then

$$d(G) = \gamma(G) - 1 = i(G) - 1 = \gamma(L(G)) - 1$$

where $L(G)$ is the line graph of G .

$(0, 1)$ -ternary graph

A graph is **$(0, 1)$ -ternary** if it has no induced cycles of length 0 modulo 3 and no induced cycle of length 1 modulo 3.

E., Kim, Kim, 2025, *preprint*

- For a $(0,1)$ -ternary graph G , if $I(G)$ is not contractible, then

$$d(G) = \gamma(G) - 1 = i(G) - 1 = \gamma(L(G)) - 1$$

where $L(G)$ is the line graph of G .

- For a $(0,1)$ -ternary hypergraph H , if $I(H)$ is not contractible, then $d(H) = \gamma(H) - 1$.

Sketch of the proof

$$d(G) \leq \gamma(L(G)) - 1 \leq \gamma(G) - 1 \leq i(G) - 1 \leq d(G)$$

Sketch of the proof

$$d(G) \leq \gamma(L(G)) - 1 \leq \gamma(G) - 1 \leq i(G) - 1 \leq d(G)$$

Graph point of view, Hà and Woodroofe, 2014

$$d(G) \leq \text{reg}(R/I) - 1 \leq \gamma(L(G)) - 1$$

Proof

Sketch of the proof

$$d(G) \leq \gamma(L(G)) - 1 \leq \gamma(G) - 1 \leq i(G) - 1 \leq d(G)$$

Graph point of view, Hà and Woodroffe, 2014

$$d(G) \leq \text{reg}(R/I) - 1 \leq \gamma(L(G)) - 1$$

E., Kim and Kim

For a $(0, 1)$ -ternary graph G , $\gamma(L(G)) \leq \gamma(G)$

E., Kim and Kim

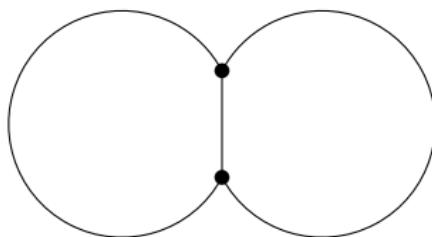
- For a connected $(0, 1)$ -ternary graph G , there exists a vertex v such that $i(G - v) \geq i(G)$.
- For a $(0, 1)$ -ternary graph G , if $I(G)$ is not contractible, then $i(G) - 1 \leq d(G)$.

Without inducedness

A graph G is $(0, 1)$ -ternary if and only if G has no cycles of length 0 or 1 modulo 3.

Without inducedness

A graph G is $(0, 1)$ -ternary if and only if G has no cycles of length 0 or 1 modulo 3.

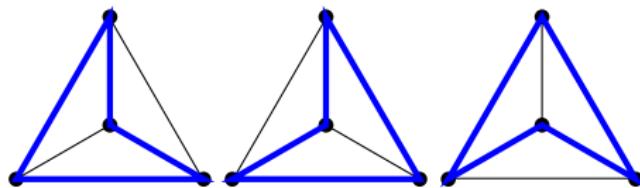
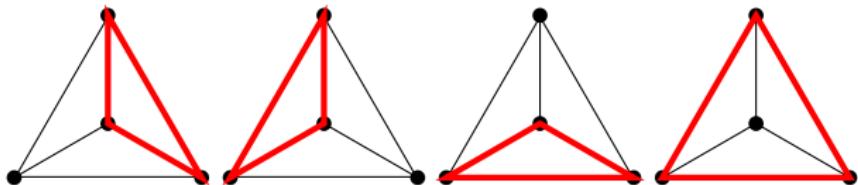


Forbidden Minor

A $(0, 1)$ -ternary graph is K_4 -(topological)-minor free.

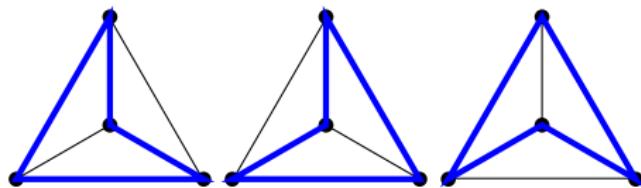
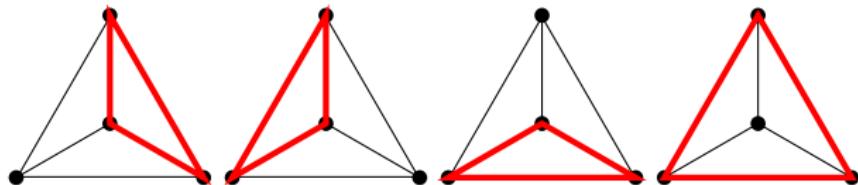
Forbidden Minor

A $(0, 1)$ -ternary graph is K_4 -(topological)-minor free.



Forbidden Minor

A $(0, 1)$ -ternary graph is K_4 -(topological)-minor free.



This is generally true for any graph G such that every cycle of length $k (\neq 0)$ modulo m

2-connected and ear-decomposition

For a 2-connected $(0, 1)$ -ternary graph G and its ear-decomposition sequence $G_0 \leq G_1 \leq \dots \leq G_k = G$, let u, v be two endpoints of the last ear E .

- Every path connecting u and v has length 1 modulo 3.
- u and v are lying on the same ear in G_{k-1} .

2-connected and ear-decomposition

For a 2-connected $(0, 1)$ -ternary graph G and its ear-decomposition sequence $G_0 \leq G_1 \leq \dots \leq G_k = G$, let u, v be two endpoints of the last ear E .

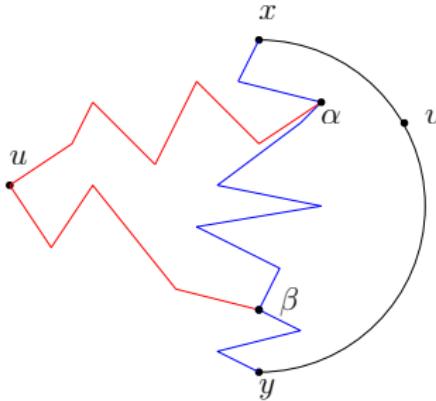
- Every path connecting u and v has length 1 modulo 3.
- u and v are lying on the same ear in G_{k-1} .

Since G is 2-connected, there exists two paths P, P' connecting u and v in G_{k-1} . Since $P \cup E$, $P' \cup E$ and $P \cup P'$ have length 2 modulo 3, P , P' and E have length 1 modulo 3.

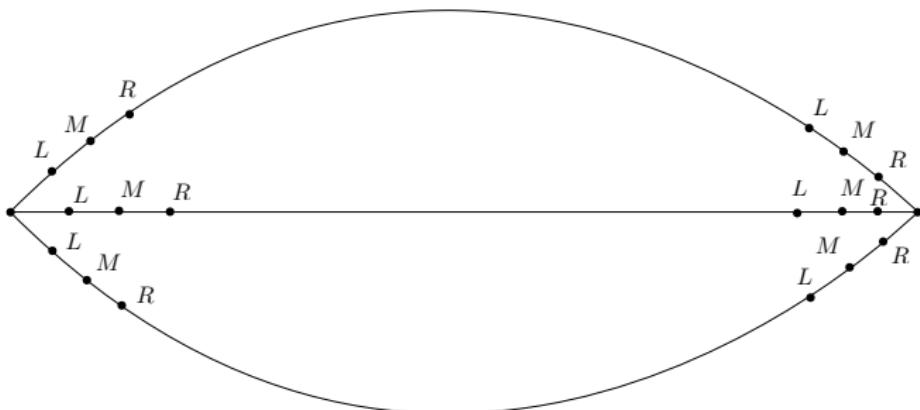
2-connected and ear-decomposition

For a 2-connected $(0, 1)$ -ternary graph G and its ear-decomposition sequence $G_0 \leq G_1 \leq \dots \leq G_k = G$, let u, v be two endpoints of the last ear E .

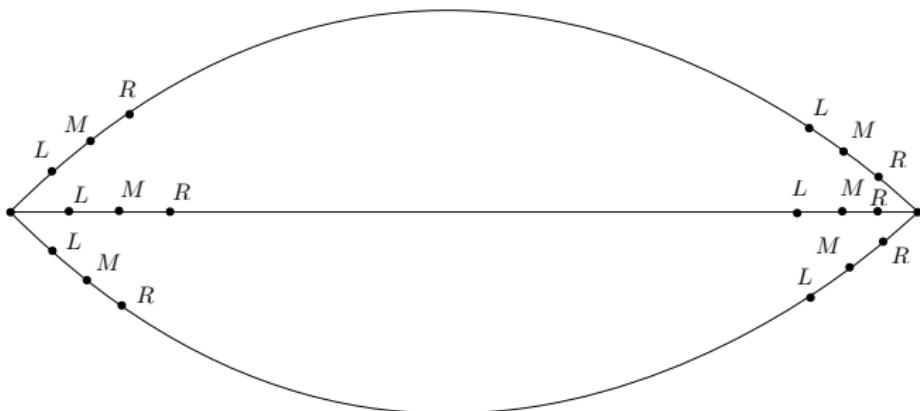
- Every path connecting u and v has length 1 modulo 3.
- u and v are lying on the same ear in G_{k-1} .



Structure of minimum independent dominating sets

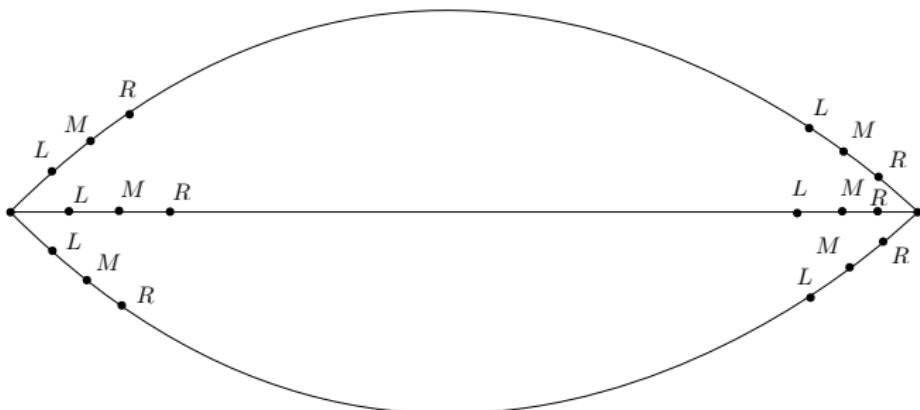


Structure of minimum independent dominating sets



The number of vertices is $3k + 2$, and its independent domination number is $k + 1$.

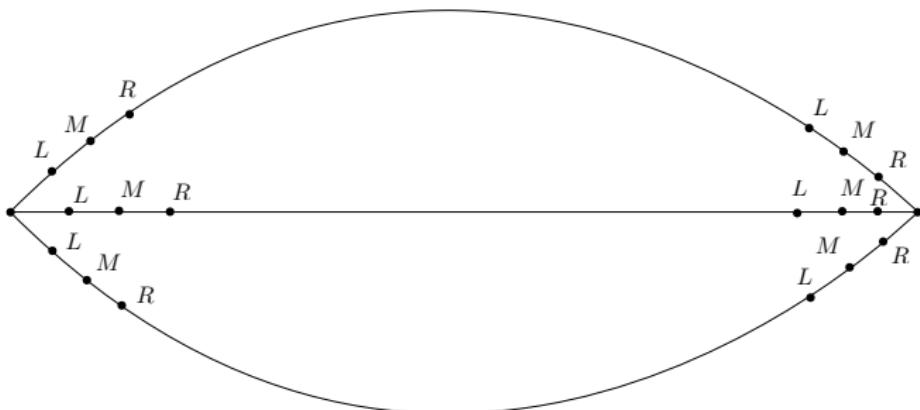
Structure of minimum independent dominating sets



The number of vertices is $3k + 2$, and its independent domination number is $k + 1$.

- If both endpoints are not in a minimum size independent dominating set, then one path has pattern $L \cdots L(LR)R \cdots R$ and others have $M \cdots M$.

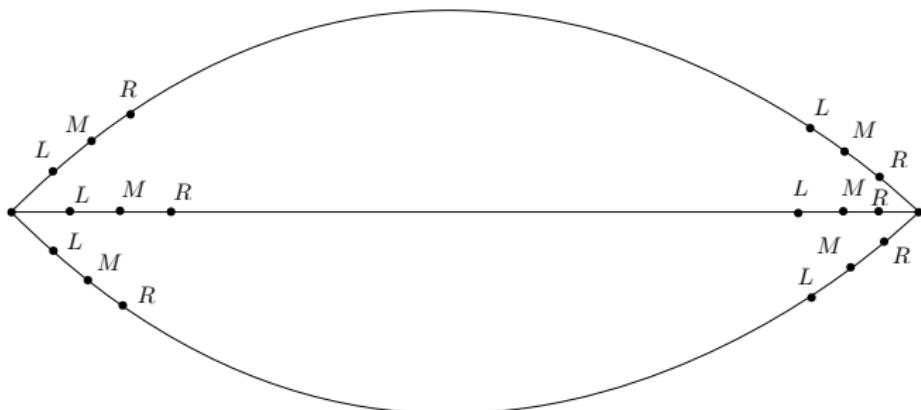
Structure of minimum independent dominating sets



The number of vertices is $3k + 2$, and its independent domination number is $k + 1$.

- If the left endpoint is in a minimum size independent domination set, then there is a path with pattern $R \cdots R$ and others have $R \cdots RM \cdots M$.

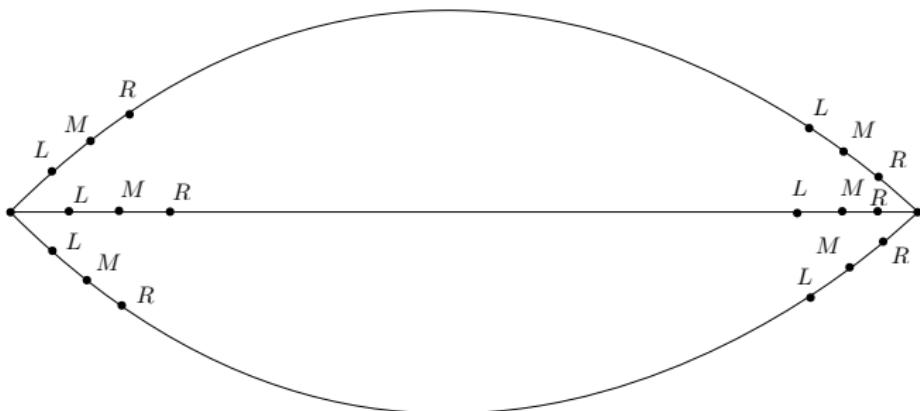
Structure of minimum independent dominating sets



The number of vertices is $3k + 2$, and its independent domination number is $k + 1$.

- If the right endpoint is in a minimum size independent domination set, then there is a path with pattern $L \cdots L$ and others have $M \cdots ML \cdots L$.

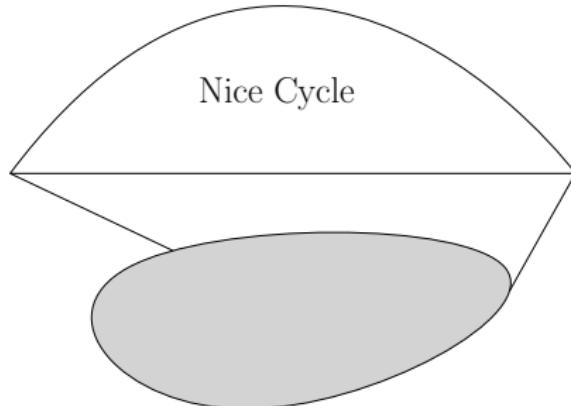
Structure of minimum independent dominating sets

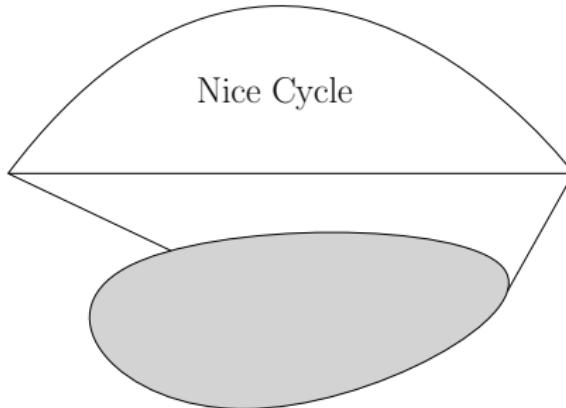


The number of vertices is $3k + 2$, and its independent domination number is $k + 1$.

- Both endpoints cannot be included in a minimum size independent dominating set simultaneously.

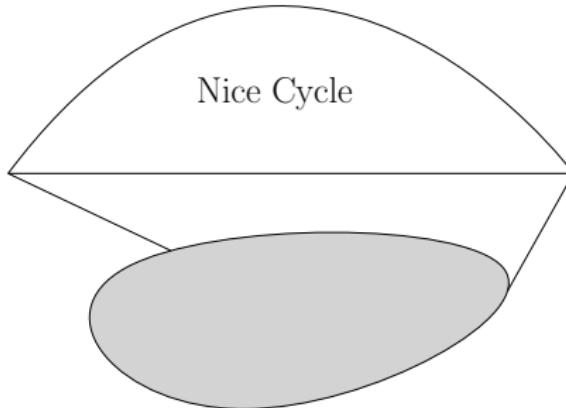
Structure of minimum independent dominating sets





Independent domination of 2-connected $(0,1)$ -ternary graphs

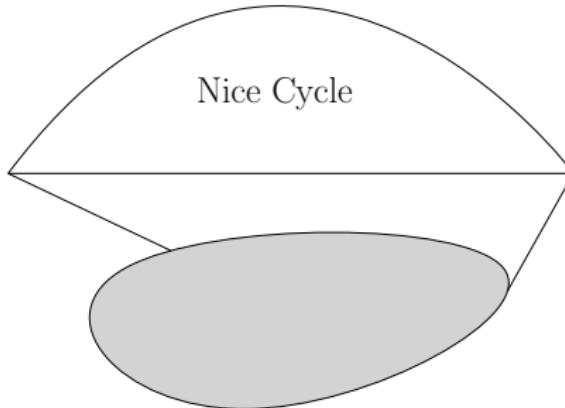
Let G be a 2-connected $(0,1)$ -ternary graph.



Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.

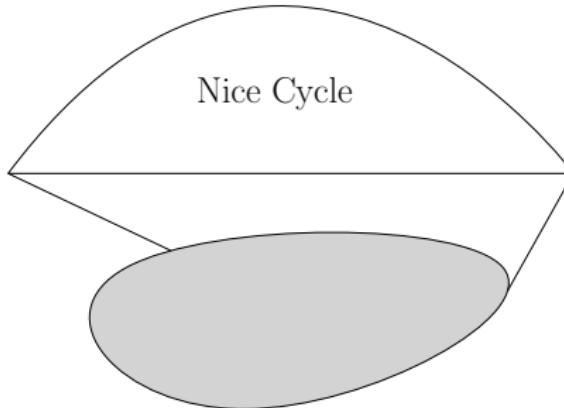
- $i(G) = \frac{|V(G)|+1}{3}$.



Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.

- $i(G) = \frac{|V(G)|+1}{3}$.
- For a minimum independent dominating set I and $u, v \in I$, there exists a path connecting u and v with length 0 or 2 modulo 3.



Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.

- $i(G) = \frac{|V(G)|+1}{3}$.
- For a minimum independent dominating set I and $u, v \in I$, there exists a path connecting u and v with length 0 or 2 modulo 3.
- For any $v \in V(G)$, $i(G - v) \geq i(G)$.

Existence of a special vertex

For a connected $(0,1)$ -ternary graph G , there exists a vertex v with $i(G - v) \geq i(G)$.

Existence of a special vertex

For a connected $(0,1)$ -ternary graph G , there exists a vertex v with $i(G - v) \geq i(G)$.

For $(0,1)$ -ternary graph which is not 2-connected, we may choose v as the cut vertex of a leaf block of the block-cut tree of G .

Existence of a special vertex

For a connected $(0,1)$ -ternary graph G , there exists a vertex v with $i(G - v) \geq i(G)$.

For $(0,1)$ -ternary graph which is not 2-connected, we may choose v as the cut vertex of a leaf block of the block-cut tree of G .

Independent domination number vs Sphere dimension

For a $(0,1)$ -ternary graph G , if $I(G)$ is not contractible, then

$$i(G) - 1 \leq d(G).$$

This uses a Mayer-Vietoris argument based on $G - v$ and $G - N(v)$ to prove $\tilde{H}_s(I(G)) = 0$ for $s \leq i(G) - 2$.

Domination number vs Edge domination number

For a $(0,1)$ -ternary graph G ,

$$\gamma(L(G)) \leq \gamma(G).$$

Sketch of the proof) Generally, for a $(0,1)$ -ternary graph G and a minimum size dominating set W , there exists $W' \subseteq W$ and edges $e_1, \dots, e_{|W'|}$ where each e_i attaches to a vertex in W' such that $W \setminus W'$ with $e_1, \dots, e_{|W'|}$ dominates edges.

Domination number vs Edge domination number

For a $(0,1)$ -ternary graph G ,

$$\gamma(L(G)) \leq \gamma(G).$$

Sketch of the proof) Generally, for a $(0,1)$ -ternary graph G and a minimum size dominating set W , there exists $W' \subseteq W$ and edges $e_1, \dots, e_{|W'|}$ where each e_i attaches to a vertex in W' such that $W \setminus W'$ with $e_1, \dots, e_{|W'|}$ dominates edges.

- $\gamma(L(G)) \leq \gamma(L(G) - \{e_1, \dots, e_{|W'|}\}) + |W'|$.

Domination number vs Edge domination number

For a $(0,1)$ -ternary graph G ,

$$\gamma(L(G)) \leq \gamma(G).$$

Sketch of the proof) Generally, for a $(0,1)$ -ternary graph G and a minimum size dominating set W , there exists $W' \subseteq W$ and edges $e_1, \dots, e_{|W'|}$ where each e_i attaches to a vertex in W' such that $W \setminus W'$ with $e_1, \dots, e_{|W'|}$ dominates edges.

- $\gamma(L(G)) \leq \gamma(L(G) - \{e_1, \dots, e_{|W'|}\}) + |W'|.$
- $\gamma(L(G) - \{e_1, \dots, e_{|W'|}\}) \leq \gamma(G') \leq |W| - |W'|.$

Domination number vs Edge domination number

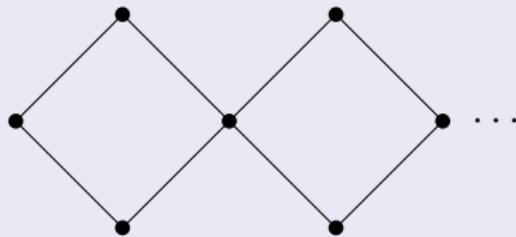
For a $(0,1)$ -ternary graph G ,

$$\gamma(L(G)) \leq \gamma(G).$$

Sketch of the proof) Generally, for a $(0,1)$ -ternary graph G and a minimum size dominating set W , there exists $W' \subseteq W$ and edges $e_1, \dots, e_{|W'|}$ where each e_i attaches to a vertex in W' such that $W \setminus W'$ with $e_1, \dots, e_{|W'|}$ dominates edges.

- $\gamma(L(G)) \leq \gamma(L(G) - \{e_1, \dots, e_{|W'|}\}) + |W'|$.
- $\gamma(L(G) - \{e_1, \dots, e_{|W'|}\}) \leq \gamma(G') \leq |W| - |W'|$.
- $\gamma(L(G)) \leq |W| - |W'| + |W'| = |W| = \gamma(G)$.

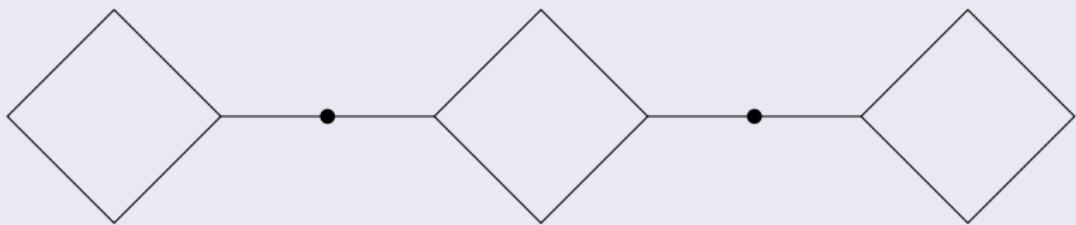
Connected C_4



$3k - 1$ consecutive induced C_4 .

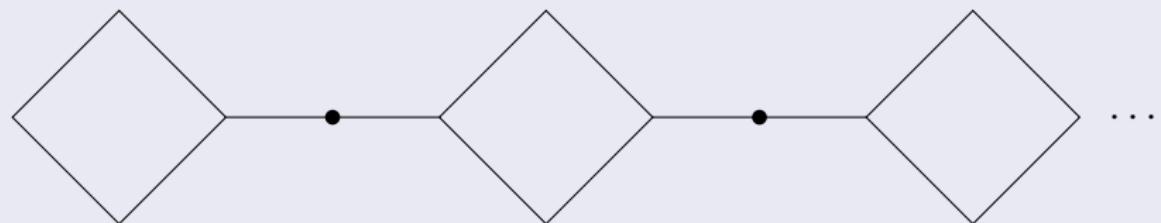
- $I(\bullet) \simeq S^{2k-1}$
- $\gamma(\bullet) = i(\bullet) = 3k$

Connected C_4 by path of length 2



- $I(\bullet) \simeq S^3$
- $\gamma(\bullet) = i(\bullet) = 5$
- $\gamma(L(\bullet)) = 6$

Connected C_4 by path of length 2



For the case with $3k$ induced C_4

- $I(\bullet) \simeq S^{4k-1}$
- $\gamma(\bullet) = i(\bullet) = \lceil \frac{9k}{2} \rceil$
- $\gamma(L(\bullet)) = 6k$

Remaining problems

- Is there any other parameter to represent the $d(G)$, which explains cases with length 1 modulo 3 cycles?
- $\frac{2}{3}\gamma(G) \leq d(G) + 1 \leq \gamma(G)$?
- If $\gamma(G) \neq i(G)$, then $I(G)$ is contractible?

The end.