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Simplicial Complex

Abstract simplicial complex
An abstract simplicial complex is a finite family of finite sets closed
under taking subsets.

Embeddability

Unique Embedding
For an abstract simplicial complex, every embeddings are
homeomorphic.

Independence complex, Clique complex, Nerve complex, . . .
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From Kalai, Meshulam and Engström

Ternary graph
A graph is ternary if it has no induced cycles of length 0 modulo 3.

χ(I (G )) for ternary graphs (Chudnovsky, Scott, Seymour and
Spirkl, 2020)

For a ternary graph G ,
∣∣∣∑A:indep(−1)|A|

∣∣∣ ≤ 1

Betti numbers of ternary graphs (Zhang and Wu, 2025, Arxiv 2020)

For a ternary graph G , the sum of reduced Betti number of I (G ) is
at most 1.

Homotopy type of the ternary graph (J. Kim, 2022)

A graph G is ternary iff I (H) is either contractible or homotopy
equivalent to a sphere for every induced subgraph H of G .
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Question

Question
For a ternary graph G with non-contractible I (G ), what is the
dimension d(G ) of sphere Sd ≃ I (G )?

Known Result (Marietti and Testa, 2008)

For a forest F , if I (F ) is not contractible, then

d(F ) = γ(F )− 1 = i(F )− 1

where γ(F ) is the domination number and i(F ) is the independent
domination number of F .

This result is also true for C5,C8,. . . , but not for C4,C7,. . . .
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Result

(0, 1)-ternary graph

A graph is (0, 1)-ternary if it has no induced cycles of length 0
modulo 3 and no induced cycle of length 1 modulo 3.

E., Kim, Kim, 2025, preprint

For a (0,1)-ternary graph G , if I (G ) is not contractible, then

d(G ) = γ(G )− 1 = i(G )− 1 = γ(L(G ))− 1

where L(G ) is the line graph of G .
For a (0,1)-ternary hypergraph H, if I (H) is not contractible,
then d(H) = γ(H)− 1.
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Proof

Sketch of the proof

d(G ) ≤ γ(L(G ))− 1 ≤ γ(G )− 1 ≤ i(G )− 1 ≤ d(G )

Graph point of view, Hà and Woodroofe, 2014

d(G ) ≤ reg(R/I )− 1 ≤ γ(L(G ))− 1

E., Kim and Kim
For a (0, 1)-ternary graph G , γ(L(G )) ≤ γ(G )

E., Kim and Kim
For a connected (0, 1)-ternary graph G , there exists a vertex v
such that i(G − v) ≥ i(G ).
For a (0, 1)-ternary graph G , if I (G ) is not contractible, then
i(G )− 1 ≤ d(G ).
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Structure of (0, 1)-ternary graphs. Part 0

Without inducedness
A graph G is (0, 1)-ternary if and only if G has no cycles of length
0 or 1 modulo 3.
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Structure of (0, 1)-ternary graphs. Part 1

Forbidden Minor
A (0, 1)-ternary graph is K4-(topological)-minor free.

This is generally true for any graph G such that every cycle of
length k(̸= 0) modulo m
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Structure of (0, 1)-ternary graphs. Part 2

2-connected and ear-decomposition

For a 2-connected (0, 1)-ternary graph G and its ear-decomposition
sequence G0 ≤ G1 ≤ · · · ≤ Gk = G , let u, v be two endpoints of
the last ear E .

Every path connecting u and v has length 1 modulo 3.
u and v are lying on the same ear in Gk−1.
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sequence G0 ≤ G1 ≤ · · · ≤ Gk = G , let u, v be two endpoints of
the last ear E .

Every path connecting u and v has length 1 modulo 3.
u and v are lying on the same ear in Gk−1.

Since G is 2-connected, there exists two paths P,P ′ connecting u
and v in Gk−1. Since P ∪ E , P ′ ∪ E and P ∪ P ′ have length 2
modulo 3, P , P ′ and E have length 1 modulo 3.
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Structure of minimum independent dominating sets
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The number of vertices is 3k + 2, and its independent domination
number is k + 1.

If both endpoints are not in a minimum size independent
dominating set, then one path has pattern L · · · L(LR)R · · ·R
and others have M · · ·M.
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The number of vertices is 3k + 2, and its independent domination
number is k + 1.

Both endpoints cannot be included in a minimum size
independent dominating set simultaneously.
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Structure of minimum independent dominating sets

Nice Cycle

Independent domination of 2-connected (0,1)-ternary graphs

Let G be a 2-connected (0,1)-ternary graph.

i(G ) = |V (G)|+1
3 .

For a minimum independent dominating set I and u, v ∈ I ,
there exists a path connecting u and v with length 0 or 2
modulo 3.
For any v ∈ V (G ), i(G − v) ≥ i(G ).
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Structure of minimum independent dominating sets

Existence of a special vertex

For a connected (0,1)-ternary graph G , there exists a vertex v with
i(G − v) ≥ i(G ).

For (0,1)-ternary graph which is not 2-connected, we may choose v
as the cut vertex of a leaf block of the block-cut tree of G .

Independent domination number vs Sphere dimension

For a (0,1)-ternary graph G , if I (G ) is not contractible, then

i(G )− 1 ≤ d(G ).

This uses a Mayer-Vietoris argument based on G − v and G −N(v)
to prove H̃s(I (G )) = 0 for s ≤ i(G )− 2.
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Edge domination number

Domination number vs Edge domination number

For a (0,1)-ternary graph G ,

γ(L(G )) ≤ γ(G ).

Sketch of the proof) Generally, for a (0,1)-ternary graph G and a
minimum size dominating set W , there exists W ′ ⊆ W and edges
e1, · · · , e|W ′| where each ei attaches to a vertex in W ′ such that
W \W ′ with e1, · · · , e|W ′| dominates edges.

γ(L(G )) ≤ γ(L(G )− {e1, · · · , e|W ′|}) + |W ′|.
γ(L(G )− {e1, · · · , e|W ′|}) ≤ γ(G ′) ≤ |W | − |W ′|.
γ(L(G )) ≤ |W | − |W ′|+ |W ′| = |W | = γ(G ).
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With cycles of length 1 modulo 3

Connected C4

· · ·

3k − 1 consecutive induced C4.
I (•) ≃ S2k−1

γ(•) = i(•) = 3k
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With cycles of length 1 modulo 3

Connected C4 by path of length 2

I (•) ≃ S3

γ(•) = i(•) = 5
γ(L(•)) = 6
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With cycles of length 1 modulo 3

Connected C4 by path of length 2

· · ·

For the case with 3k induced C4

I (•) ≃ S4k−1

γ(•) = i(•) =
⌈9k

2

⌉
γ(L(•)) = 6k
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Further questions

Remaining problems

Is there any other parameter to represent the d(G ), which
explains cases with length 1 modulo 3 cycles?
2
3γ(G ) ≤ d(G ) + 1 ≤ γ(G )?
If γ(G ) ̸= i(G ), then I (G ) is contractible?
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The end.
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