Forbidden sub-co-walks

Taehyun Eom

KAIST

2020.09.25

Rules for "safe" passwords

-인증서 암호 생성규칙

- ✔ 10자 이상
- ✔ 영문, 숫자, 특수문자 모두 포함
- ✔ 동일 문자 3번 미상 반복 사용 금지
- ✔ 연속된 3개 이상의 문자 사용 금지
- ✓ 허용되지 않는 특수문자 ' " ♥ | 사용 금지

Rules for "safe" passwords

-인증서 암호 생성규칙

- ✔ 10자 이상
- ✔ 영문, 숫자, 특수문자 모두 포함
- ✔ 동일 문자 3번 이상 반복 사용 금지
- ✔ 연속된 3개 이상의 문자 사용 금지
- ✔ 허용되지 않는 특수문자 ' " # | 사용 금지

Rules for "safe" passwords

Is this rule really good for safety?

Create a De Brujin-like graph \rightarrow Count the number of walks.

Count the number of vertex sequences such that

Count the number of vertex sequences such that no consecutive co-edge appears

Count the number of vertex sequences such that every sub-co-walk has length at most 1

Basic Definitions

- D : A simple directed graph allows loops on an n-vertex set V $\Leftrightarrow n \times n$ binary matrix
- $J_n: n \times n$ matrix of ones
- $1_n: n \times 1$ vector of ones
- $\theta_m^{(k)}(D)$: The number of vertex sequences $v_0\cdots v_m$ such that every sub-co-walk has length at most k
- ullet $\mathcal{L}^{(k)}(D)$: kth order line digraph of D with a vertex set V^{k+1}
- $oldsymbol{
 ho}$: The spectral radius of a matrix

- ullet $\mathcal{L}^{(k)}(J_n)$: (k+1)-dimensional De Brujin graph of n symbols
- $\mathcal{L}^{(0)}(D) = D$
- ullet $heta_m^{(0)}(D)$: The number of length m walks of D
- $1_{n^{k+1}}^T \left[\mathcal{L}^{(k)}(D) \right]^m 1_{n^{k+1}} = \theta_{m+k}^{(0)}(D)$ if $m \ge 1$

How to compute $\theta_m^{(k)}(D)$?

1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.
- 3) Let such digraph be $\delta^{(k)}(D)$.

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.
- 3) Let such digraph be $\delta^{(k)}(D)$.
- 4) Then, $1_{n^{k+1}}^T \left[\delta^{(k)}(D) \right]^m 1_{n^{k+1}} = \theta_{m+k}^{(k)}(D)$ for $m \ge 1$.

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.
- 3) Let such digraph be $\delta^{(k)}(D)$.
- 4) Then, $1_{n^{k+1}}^T \left[\delta^{(k)}(D) \right]^m 1_{n^{k+1}} = \theta_{m+k}^{(k)}(D)$ for $m \ge 1$.
 - * If $s \le k$, then $\theta_s^{(k)}(D) = n^{s+1}$.

How to compute $\theta_m^{(k)}(D)$?

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.
- 3) Let such digraph be $\delta^{(k)}(D)$.
- 4) Then, $1_{n^{k+1}}^T \left[\delta^{(k)}(D) \right]^m 1_{n^{k+1}} = \theta_{m+k}^{(k)}(D)$ for $m \ge 1$.
 - * If $s \leq k$, then $\theta_s^{(k)}(D) = n^{s+1}$.

Note that 2) step is same as deleting arcs from $\mathcal{L}^{(k)}(J_n)$ when $\alpha \to \beta$ is an arc of $\mathcal{L}^{(k)}(J_n - D)$.

- 1) Consider a vertex sequence $\alpha = v_0 \cdots v_k \in V^{k+1}$ as a set of vertex sequences ends with α .
- 2) Draw arcs $\alpha \xrightarrow{+w} v_1 \cdots v_k w =: \beta$ if $v_0 \cdots v_k w$ is not a co-walk.
- 3) Let such digraph be $\delta^{(k)}(D)$.
- 4) Then, $1_{n^{k+1}}^T \left[\delta^{(k)}(D) \right]^m 1_{n^{k+1}} = \theta_{m+k}^{(k)}(D)$ for $m \ge 1$.
 - * If $s \leq k$, then $\theta_s^{(k)}(D) = n^{s+1}$.

$$\delta^{(k)}(D) = \mathcal{L}^{(k)}(J_n) - \mathcal{L}^{(k)}(J_n - D).$$

Perron-Frobenius theorem for irreducible non-negative matrices

For any irreducible non-negative matrix A, $\rho(A)$ is a simple eigenvalue of A and it corresponds to a positive eigenvector.

Perron-Frobenius theorem for irreducible non-negative matrices

For any irreducible non-negative matrix A, $\rho(A)$ is a simple eigenvalue of A and it corresponds to a positive eigenvector.

For reducible non-negative matrix, its spectrum is union of spectra of submatrices based on irreducible components, i.e. strongly connected components in underlying directed graph.

Corollary

For an irreducible non-negative matrix A and its positive eigenvector x of $\rho(A)$,

$$\left[\left(\min_i \frac{w_i}{x_i} \right) v^T x \right] \rho(A)^m \leq v^T A^m w \leq \left[\left(\max_i \frac{w_i}{x_i} \right) v^T x \right] \rho(A)^m$$

for every non-negative vector v, w.

Corollary

For any non-negative $n\times n$ matrix A, there exists a constant $c\geq 1$ and a polynomial p such that

$$c\rho(A)^m \le 1_n^T A^m 1_n \le p(m)\rho(A)^m$$

for every $m \ge n$. Hence,

$$\lim_{m \to \infty} \left[1_n^T A^m 1_n \right]^{1/m} = \rho(A).$$

Here, if A is irreducible, then polynomial p be a constant polynomial. This gives

$$\rho(\delta^{(k)}(D)) = \lim_{m \to \infty} \left[\theta_{m+k}^{(k)}(D)\right]^{\frac{1}{m}} = \lim_{m \to \infty} \left[\theta_m^{(k)}(D)\right]^{\frac{1}{m}}$$

Corollary

For a non-negative matrix A,

- if μ is the minimum value among non-zero entries, $\rho(A) < \mu$ implies $\rho(A) = 0$. In particular, $\rho(D) \neq 0$ implies $\rho(D) \geq 1$ for a binary matrix D.
- $\rho(A) \neq 0$ if and only if its underlying directed graph does not contains a cycle.

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

$$v_0v_1\cdots v_{k+1}$$

$$w_0 \cdots w_k w_{k+1}$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

$$v_1 \cdots v_{k+1}$$

$$w_0 \cdots w_k$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_1 \cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0 \cdots w_k$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

$$\underbrace{ \text{arc in } \delta^{(k)}(D) }_{\text{arc in } \delta} \times \underbrace{ \cdots s }_{\text{arc in } \delta}$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

Proposition

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

• v_0v_1 w_0w_1

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

•
$$v_0v_1 \xrightarrow{Arc(D)} x$$
 $y \xrightarrow{Arc(D)} w_0w_1$

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

•
$$v_0v_1 \xrightarrow{Arc(D)} x - - \rightarrow y \xrightarrow{Arc(D)} w_0w_1$$

Proposition

- If $\delta^{(k)}(D)$ is irreducible, then $\delta^{(k+1)}(D)$ is also irreducible.
- ullet If D has a source or sink, then for every k, $\delta^{(k)}(D)$ cannot be irreducible.
- If D has no source nor sink, then $\delta^{(1)}(D)$ is irreducible.

•
$$v_0v_1\cdots v_{k+1} \xrightarrow{\delta^{(k)}(D)\text{-walk}} w_0\cdots w_kw_{k+1}$$

$$\qquad \qquad \overset{\text{arc in } \delta^{(k)}(D)}{\times} \times \overset{s \cdot \cdot \cdot \cdot s}{\longrightarrow} s \cdot \cdot \cdot s \qquad \qquad t \cdot \cdot \cdot t \overset{\text{arc in } \delta^{(k)}(D)}{\longrightarrow}$$

•
$$v_0v_1 \xrightarrow{Arc(D)} x - - \rightarrow y \xrightarrow{Arc(D)} w_0w_1$$

This also proves that $\left[\delta^{(k)}(D)\right]^m$ is positive for $k \geq 1$ and m > k + 3 if D has no source nor sink.

For
$$k \geq 1$$
, let $q = \lfloor \frac{m}{k+1} \rfloor$, $r = m - (k+1)q$. Then,

$$\theta_m^{(k)}(D) \ge [\#Arc(D)]^q n^{(k-1)q+r+1} \ge [\#Arc(D)]^q n^{m\left(1-\frac{2}{k+1}\right)+1}.$$

Note that
$$\#Arc(D) = 1_n^T D1_n = \theta_1^{(0)}(D)$$
.

Proposition

For
$$k \geq 1$$
, let $q = \lfloor \frac{m}{k+1} \rfloor$, $r = m - (k+1)q$. Then,

$$\theta_m^{(k)}(D) \ge [\#Arc(D)]^q n^{(k-1)q+r+1} \ge [\#Arc(D)]^q n^{m\left(1-\frac{2}{k+1}\right)+1}.$$

Note that $\#Arc(D) = 1_n^T D1_n = \theta_1^{(0)}(D)$.

Proof. It is easy to check that every vertex sequence in

$$V \times V^{k-1} \times Arc(D) \times V^{k-1} \times Arc(D) \times \cdots \times V^{k-1} \times Arc(D) \times V^{r}$$

is valid sequence when consider $\theta_m^{(k)}(D)$.

Corollary

Suppose $D \neq 0$.

- $\rho(\delta^{(k)}(D)) \ge n^{1-\frac{2}{k+1}}$ if $k \ge 1$.
- $\lim_{k\to\infty} \rho(\delta^{(k)}(D)) = n$.
- For any function $f:\mathbb{N}\to\mathbb{N}$ such that $\lim_{m\to\infty}f(m)=\infty$, we have

$$\lim_{m \to \infty} [\theta_m^{(f(m))}(D)]^{\frac{1}{m}} = n.$$

• For any $\tau \in (0,1)$,

$$\lim_{m \to \infty} [\theta_m^{(\tau m)}(D)]^{\frac{1}{m}} = n.$$

Proposition

If D and D' are n-vertex outerdegree d-regular,

$$\theta_m^{(k)}(D) = \theta_m^{(k)}(D')$$

for every $k, m \ge 0$ and hence, $\rho(\delta^{(k)}(D)) = \rho(\delta^{(k)}(D'))$.

Proposition

If D and D' are n-vertex outerdegree d-regular,

$$\theta_m^{(k)}(D) = \theta_m^{(k)}(D')$$

for every $k, m \ge 0$ and hence, $\rho(\delta^{(k)}(D)) = \rho(\delta^{(k)}(D'))$.

Proof 1. Assume that D and D' have common vertex set V. Define $f_{v,D}:\{(0,1),\cdots,(0,d),(1,1),\cdots,(1,n-d)\}\to V$ as

- $f_{v,D}((0,i))$ is *i*th vertex among v's neighbors.
- $f_{v,D}((1,i))$ is *i*th vertex among v's non-neighbors.

Similarly, define $f_{v,D'}$. These functions are well-defined since D, D' are outerdegree d-regular.

Consider the following bijection from vertex sequences of ${\cal D}$ to vertex sequences of ${\cal D}'$

$$v_0$$

$$v_1$$

$$v_2$$

$$v_m$$

$$v_0 =: w_0$$

Consider the following bijection from vertex sequences of ${\cal D}$ to vertex sequences of ${\cal D}'$

$$v_0$$
 v_1 v_2 \cdots v_m w_0 $f_{w_0,D'}(f_{v_0,D}^{-1}(v_1)) =: w_1$

Consider the following bijection from vertex sequences of ${\cal D}$ to vertex sequences of ${\cal D}'$

$$v_0 v_1 v_2 \cdots v_m$$

 $w_0 w_1 f_{w_1,D'}(f_{v_1,D}^{-1}(v_2)) =: w_2$

Consider the following bijection from vertex sequences of ${\cal D}$ to vertex sequences of ${\cal D}'$

 v_0 v_1

 $w_0 \qquad w_1$

 v_2 w_2

•••

 v_m

 w_m

Consider the following bijection from vertex sequences of D to vertex sequences of D^\prime

$$v_0$$
 v_1 v_2 \cdots v_m w_0 w_1 w_2 \cdots w_m

This bijection preserves sub-co-walk structure, so we have

$$\theta_m^{(k)}(D) = \theta_m^{(k)}(D'),$$

and hence, we have

$$\rho(\delta^{(k)}(D)) = \lim_{m \to \infty} \theta_m^{(k)}(D)^{\frac{1}{m}} = \lim_{m \to \infty} \theta_m^{(k)}(D')^{\frac{1}{m}} = \rho(\delta^{(k)}(D'))$$

Proposition

If D and D' are n-vertex outerdegree d-regular,

$$\theta_m^{(k)}(D) = \theta_m^{(k)}(D')$$

for every $k, m \ge 0$ and hence, $\rho(\delta^{(k)}(D)) = \rho(\delta^{(k)}(D'))$.

Proposition

If D and D' are n-vertex outerdegree d-regular,

$$\theta_m^{(k)}(D) = \theta_m^{(k)}(D')$$

for every $k, m \geq 0$ and hence, $\rho(\delta^{(k)}(D)) = \rho(\delta^{(k)}(D'))$.

Proof 2.

Thus, we have

$$\theta_m^{(k)}(D) = 1_{k+1}^T \begin{bmatrix} d & d & \cdots & d \\ n-d & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & n-d & 0 \end{bmatrix}^m \begin{bmatrix} n \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \theta_m^{(k)}(D')$$

and

$$\rho(\delta^{(k)}(D)) = \rho(\delta^{(k)}(D')) = \rho \begin{pmatrix} d & d & \cdots & d \\ n-d & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & n-d & 0 \end{pmatrix}$$

In $n^{k+1} \times n^{k+1}$ matrix $\delta^{(k)}(D)$, there exists many redundancies. As similar as regular case, when we add a vertex to given vertex sequence, it is enough to consider only after the last arc appears.

In $n^{k+1} \times n^{k+1}$ matrix $\delta^{(k)}(D)$, there exists many redundancies. As similar as regular case, when we add a vertex to given vertex sequence, it is enough to consider only after the last arc appears.

Definitions

• $[^{\wedge}w]$: the set of vertex sequences $v_0 \cdots v_k$ ends maximally by w, where w is a co-walk of length at most k.

In $n^{k+1} \times n^{k+1}$ matrix $\delta^{(k)}(D)$, there exists many redundancies. As similar as regular case, when we add a vertex to given vertex sequence, it is enough to consider only after the last arc appears.

Definitions

- $[^{\wedge}w]$: the set of vertex sequences $v_0 \cdots v_k$ ends maximally by w, where w is a co-walk of length at most k.
- ullet $\widetilde{\Theta}_k$: the set of co-walks w of length at most k such that $\lceil {}^{\wedge}w \rceil \neq \emptyset.$

In $n^{k+1} \times n^{k+1}$ matrix $\delta^{(k)}(D)$, there exists many redundancies. As similar as regular case, when we add a vertex to given vertex sequence, it is enough to consider only after the last arc appears.

Definitions

- $[^{\wedge}w]$: the set of vertex sequences $v_0 \cdots v_k$ ends maximally by w, where w is a co-walk of length at most k.
- ullet $\widetilde{\Theta}_k$: the set of co-walks w of length at most k such that $[{}^{\wedge}w] \neq \emptyset$.
- $P: n^{k+1} \times \widetilde{\Theta}_k$ matrix such that each column is the characteristic vector of $\lceil ^{\wedge}w \rceil$.

In $n^{k+1} \times n^{k+1}$ matrix $\delta^{(k)}(D)$, there exists many redundancies. As similar as regular case, when we add a vertex to given vertex sequence, it is enough to consider only after the last arc appears.

Definitions

- $[^{\wedge}w]$: the set of vertex sequences $v_0 \cdots v_k$ ends maximally by w, where w is a co-walk of length at most k.
- ullet Θ_k : the set of co-walks w of length at most k such that $[{}^{\wedge}w] \neq \emptyset$.
- $P: n^{k+1} \times \widetilde{\Theta}_k$ matrix such that each column is the characteristic vector of $\lceil ^{\wedge}w \rceil$.

Note that $[^{\wedge}w]=\emptyset$ if and only if w starts with a source and the length is less than k.

Definitions

- \bullet $\widetilde{\delta}^{(k)}(D)$: $\widetilde{\Theta}_k \times \widetilde{\Theta}_k$ binary matrix defined as follows
 - 1) Choose a co-walk w in $\widetilde{\Theta}_k$ such that the length is less than k, and a vertex v.
 - 2) If wv is a co-walk, draw an arc $w \to wv$.
 - 3) If wv is not a co-walk, draw an arc $w \to v$.

Definitions

- $\widetilde{\delta}^{(k)}(D)$: $\widetilde{\Theta}_k \times \widetilde{\Theta}_k$ binary matrix defined as follows
 - 1) Choose a co-walk w in $\widetilde{\Theta}_k$ such that the length is less than k, and a vertex v.
 - 2) If wv is a co-walk, draw an arc $w \to wv$.
 - 3) If wv is not a co-walk, draw an arc $w \to v$.

Proposition

- $\bullet \ [\delta^{(k)}(D)]P = P[\widetilde{\delta}^{(k)}(D)]$
- $\bullet \ 1_{n^{k+1}}^T P[\widetilde{\delta}^{(k)}(D)]^m 1_{\widetilde{\Theta}_k} = \theta_{m+k}^{(k)}(D) \text{ for } m \geq 1.$
- $\rho(\delta^{(k)}(D)) = \rho(\widetilde{\delta}^{(k)}(D))$

This is usual process using equitable partitions.

For $v, v' \in V$, consider a conditional probability

$$p_{vv'} = P(wv' \text{ is not a co-walk}|w = v_0 \cdots v_{k-1}v)$$

and the $n \times n$ matrix $\widehat{\delta}^{(k)}(D)$ consists of $p_{vv'}$.

For $v, v' \in V$, consider a conditional probability

$$p_{vv'} = P(wv' \text{ is not a co-walk}|w = v_0 \cdots v_{k-1}v)$$

and the $n \times n$ matrix $\widehat{\delta}^{(k)}(D)$ consists of $p_{vv'}$.

Conjecture

$$\rho(\delta^{(k)}(D)) \simeq \rho(\widehat{\delta}^{(k)}(D))$$

For $v, v' \in V$, consider a conditional probability

$$p_{vv'} = P(wv' \text{ is not a co-walk}|w = v_0 \cdots v_{k-1}v)$$

and the $n \times n$ matrix $\widehat{\delta}^{(k)}(D)$ consists of $p_{vv'}$.

Conjecture

$$\rho(\delta^{(k)}(D)) \simeq \rho(\widehat{\delta}^{(k)}(D))$$

Note that if $vv' \in Arc(D)$, then $p_{vv'} = 1$ and if $vv' \notin Arc(D)$,

$$p_{vv'} = 1 - \frac{\text{\#length } k \text{ co-walk ends with } v}{n^k} = 1 - \frac{1_n^T [J_n - D]^k e_v}{n^k}$$

where e_v is the characteristic vector for v.

We can generate $\widehat{\delta}^{(k)}(D)$ as follows.

1) Compute

$$q_v^{(k)}(D) = \frac{1_n^T [J_n - D]^k e_v}{n^k}.$$

We can generate $\widehat{\delta}^{(k)}(D)$ as follows.

1) Compute

$$q_v^{(k)}(D) = \frac{1_n^T [J_n - D]^k e_v}{n^k}.$$

2) Let $Q^{(k)}(D)$ be the diagonal matrix of $q_v^{(k)}(D)$'s.

We can generate $\widehat{\delta}^{(k)}(D)$ as follows.

1) Compute

$$q_v^{(k)}(D) = \frac{1_n^T [J_n - D]^k e_v}{n^k}.$$

- 2) Let $Q^{(k)}(D)$ be the diagonal matrix of $q_v^{(k)}(D)$'s.
- 3) Then, we get

$$\widehat{\delta}^{(k)}(D) = D + (I_n - Q^{(k)}(D))(J_n - D) = J_n - Q^{(k)}(D)[J_n - D].$$

We can generate $\widehat{\delta}^{(k)}$ as follows, also.

1) Get $\delta^{(k)}(D)$ and order row and column by colexicographic order.

- 1) Get $\delta^{(k)}(D)$ and order row and column by colexicographic order.
- 2) Divide $\delta^{(k)}(D)$ into $n^k \times n^k$ submatricies [-v,-v']s.

- 1) Get $\delta^{(k)}(D)$ and order row and column by colexicographic order.
- 2) Divide $\delta^{(k)}(D)$ into $n^k \times n^k$ submatricies [-v, -v']s.
- 3) Let $n_{vv'}$ be the number of 1's in [-v, -v'].

- 1) Get $\delta^{(k)}(D)$ and order row and column by colexicographic order.
- 2) Divide $\delta^{(k)}(D)$ into $n^k \times n^k$ submatricies [-v, -v']s.
- 3) Let $n_{vv'}$ be the number of 1's in [-v, -v'].
- 4) Generate a matrix consists of $\frac{n_{vv'}}{n^k}$.

Miscellaneous

- $\lim_{k\to\infty} Q^{(k)}(D) = 0$ if $D\neq 0$.
- $\lim_{k\to\infty} \rho(\widehat{\delta}^{(k)}(D)) = n$.
- For $n \times n$ binary matrices with exactly one 1, $E[\rho] = \frac{1}{n}$.
- For $n \times n$ binary matrices with exactly two 1's, $E[\rho] = \frac{2}{n}$.
- ullet For n imes n binary matrices with exactly three 1's,

$$E[\rho] = \frac{3}{n} \left(1 - \frac{3 - \sqrt{5}}{(n+1)(n^2 - 2)} \right).$$

About construction

• Is it possible to define η properly so

$$\rho(\eta^k(D)) = \rho(\eta(\eta(\cdots \eta(D)\cdots))) = \rho(\delta^{(k)}(D))?$$

• Is there any natural algebraic operator ∘ such that

$$[\delta^{(k)}(D)] \circ D = [\delta^{(k+1)}(D)]?$$

• Is it possible to define theses concepts for multigraphs?

About values

• For given D, is it possible to find a concrete bound $p_k(m)$ satisfying

$$\frac{1_{n^{k+1}}^T [\delta^{(k)}(D)]^m 1_{n^{k+1}}}{\rho(\delta^{(k)}(D))^m} \le p_k(m)$$

which satisfies $[p_{f(m)}(m)]^{1/m} \to 1$ for every, or certain conditioned, f with $f \to \infty$. Is it possible to find such p_k does not depends on k?

ullet Is there any relation between $ho(\delta^{(k)}(D))$ and

$$\rho \left(\begin{bmatrix} d & d & \cdots & d \\ n-d & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & n-d & 0 \end{bmatrix} \right)$$

where d is the mean outerdegree.

About values

• We have $\rho(\delta^{(k)}(D)) \geq n^{1-\frac{2}{k+1}}$ as a natural bound. Then, if we consider some normalization such as

$$\left[\frac{\rho(\delta^{(k)}(D)}{n^{1-\frac{2}{k+1}}}\right]^{\frac{k+1}{2}},$$

what can we say about its limit?

About reductions

- Find conditions for the irreducibility of $\widetilde{\delta}^{(k)}(D)$.
- Is there any remarkable facts for the ranks of $\delta^{(k)}(D)$ and $\widetilde{\delta}^{(k)}(D)$?
- ullet Is there any better reduction for certain types of D, which has weaker condition than regularity?

About approximation

- Is $\widehat{\delta}^{(k)}(D)$ really good approximation for $\delta^{(k)}(D)$ to compute ρ ?
- For $n \times n$ binary matrices with exactly k 1's, is the following satisfied?

$$nE[\rho] \to k \text{ as } n \to \infty$$

How about matrices with some restrictions like [-v,-v'] has? For example, each row has at most one 1, or only certain columns are possible to contain 1.

- For equidivided block matrix B, is it possible to make good approxymation to compute ρ by informations from its blocks, such as the sum of entries divided by dimension?
- Compute $E[\rho(\delta^{(k)}(D))]$ for random binary matrix D. Is it possible to find the distribution of $\rho(\delta^{(k)}(\bullet))$? Is there exists some meaningful limiting distribution? How about for the case of $\hat{\delta}^{(k)}$?

About generalization

- How theses theory changes for the following possible generalizations?
 - restriction on reverse direction
 - restriction on both sub-walk and sub-co-walk
 - closed vertex sequences
 - colored arcs and restriction on the length of monotone sub-walks
- Is it possible to find some general formula for $\theta_m^{(k)}(D)$ based on binomial coefficients or inclusion-exclusion principle?