Fractional discrete Helly for pairs in a family of boxes

Taehyun Eom

joint work with Minki Kim and Eon Lee

April 25, 2025

Helly's theorem

Helly's theorem for convex sets (1923)

For convex sets $X_1, \dots, X_n \subseteq \mathbb{R}^d$, if every d + 1 of them has nonempty intersection, then so is the total collection.

Helly's theorem

Helly's theorem for convex sets (1923)

For convex sets $X_1, \dots, X_n \subseteq \mathbb{R}^d$, if every d + 1 of them has nonempty intersection, then so is the total collection.

Helly's theorem

Helly's theorem for convex sets (1923)

For convex sets $X_1, \dots, X_n \subseteq \mathbb{R}^d$, if every d + 1 of them has nonempty intersection, then so is the total collection.

Helly theorem for axis-parallel boxes

For axis-parallel boxes $B_1, \dots, B_n \subseteq \mathbb{R}^d$, if every pair intersects, then $\bigcap_i B_i \neq \emptyset$.

Fractional Helly theorem (Katchalski and Liu, 1979)

For any $\alpha \in (0, 1)$, there exists $\beta = \beta(\alpha, d) > 0$ such that, for any convex sets $X_1, \dots, X_n \subseteq \mathbb{R}^d$, if $\alpha \binom{n}{d+1}$ of (d+1)-tuples of them intersect, then there exists an intersecting subfamily of size at least βn .

S-Helly theorem (discrete Helly theorem) for axis-parallel boxes (Halman, 2008)

Let $S \subseteq \mathbb{R}^d$ be a set of points. For axis-parallel boxes $B_1, \dots, B_n \subseteq \mathbb{R}^d$, if every 2*d* of them intersects at *S*, then so is the total collection. i.e., $S \cap \bigcap_i B_i \neq \emptyset$.

Eckhoff, 1988

For axis-parallel boxes $B_1, \dots, B_n \subseteq \mathbb{R}^d$ and a real number $\alpha \in (1 - \frac{1}{d}, 1]$, if at least $\alpha \binom{n}{2}$ pairs intersect, then there exists an intersecting subfamily of size at least $(1 - \sqrt{d(1 - \alpha)}) n$.

Edwards and Soberón, 2024, preprint

For any $\alpha \in (0, 1)$, there exists $\beta = \beta(\alpha, d)$ such that, for any point set $S \subseteq \mathbb{R}^d$ and axis-parallel boxes $B_1, \dots, B_n \subseteq \mathbb{R}^d$, if $\alpha\binom{n}{d+1}$ of (d+1)-tuples intersects at S, then there exists a subfamily of size at least βn intersects at S.

E., Kim and Lee, 2025, preprint

- For any d, there exists N = N(d) such that, for any point set S ⊆ ℝ^d and axis-parallel boxes B₁, ..., B_N ⊆ ℝ^d, if every pair of boxes intersects at S, then there is a subfamily of size d + 1 intersects at S.
- For any d, there exists a constant $c_d \in (0,1)$ and a function $\beta_d : (c_d, 1] \to (0, 1]$ such that the following holds: for any $\alpha \in (c_d, 1]$, point set $S \subseteq \mathbb{R}^d$, and axis-parallel boxes $B_1, \dots, B_n \subseteq \mathbb{R}^d$, if at least $\alpha\binom{n}{2}$ pairs of boxes intersect at S, then there exists a subfamily of size at least $\beta_d(\alpha)n$ intersects at S.

For *n* pairwise *S*-intersecting axis-parallel boxes in \mathbb{R}^d , we have 2d permutations in S_n .

- If $\cdots i \cdots j \cdots$ appears in every 2*d* permutations, it means the box *i* contains the box *j*.
- For fixed j_1, \dots, j_m , if each permutation is a form in $\dots i \dots j_s \dots$ for some s, then $B_{j_1} \cap B_{j_2} \cap \dots \cap B_{j_m} \subseteq B_j$.
- Let $m_{\sigma}(s,t) = \max\{\sigma^{-1}(s), \sigma^{-1}(t)\}$. If there is s, t such that $\bigcap_{\sigma} \{\sigma(1), \sigma(2), \cdots, \sigma(m_{\sigma}(s,t))\} = \{i_1, \cdots, i_m, s, t\}$, then $B_s \cap B_t \subseteq B_{i_1} \cap \cdots \cap B_{i_m}$.
- For pairwise S-intersecting boxes, we can find S-intersecting max_{s,t} |∩_σ{σ(1), · · · , σ (m_σ(s, t))}|-tuple.

Question

If n is sufficient large, then

$$\max_{s,t} \left| \bigcap_{\sigma} \{ \sigma(1), \sigma(2), \cdots, \sigma(m_{\sigma}(s,t)) \} \right| \ge d+1$$

always?

Answer

For a, b, there exists n = n(a, b) such that for every $A \subseteq S_n$ with $|A| \leq a$, we have

$$\max_{s,t} \left| \bigcap_{\sigma \in A} \{ \sigma(1), \sigma(2), \cdots, \sigma(m_{\sigma}(s,t)) \} \right| \ge b+1$$

Pattern graph

Let
$$A = \{\sigma_0, \sigma_1, \cdots, \sigma_{a-1}\} \subseteq S_n$$
.

- For $i, j \in [n]$ with $\sigma_0^{-1}(i) < \sigma_0^{-1}(j)$, A-pattern of i, j is $[i, j]_A = \{\sigma \in A \setminus \{\sigma_0\} \mid \sigma^{-1}(i) < \sigma^{-1}(j)\}.$
- Pattern graph is the complete graph on [n] where each edge is colored by A-pattern.

Pattern graph

Let
$$A = \{\sigma_0, \sigma_1, \cdots, \sigma_{a-1}\} \subseteq S_n$$
.

- For $i, j \in [n]$ with $\sigma_0^{-1}(i) < \sigma_0^{-1}(j)$, A-pattern of i, j is $[i, j]_A = \{\sigma \in A \setminus \{\sigma_0\} \mid \sigma^{-1}(i) < \sigma^{-1}(j)\}.$
- Pattern graph is the complete graph on [n] where each edge is colored by A-pattern.

For permutation 1234, 1423, 3412

Properties of pattern graph

• Monochromatic chain

$$\sigma_0^{-1}(s) < \sigma_0^{-1}(i_1) < \cdots < \sigma_0^{-1}(i_m) < \sigma_0^{-1}(t)$$

is chain for any other permutations in A. In other words,

$$\sigma^{-1}(i_1), \cdots, \sigma^{-1}(i_m) < m_\sigma(s, t)$$

for any $\sigma \in A$.

• A monochromatic chain is indeed equivalent to a monochromatic clique.

Properties of pattern graph

• Monochromatic chain

$$\sigma_0^{-1}(s) < \sigma_0^{-1}(i_1) < \cdots < \sigma_0^{-1}(i_m) < \sigma_0^{-1}(t)$$

is chain for any other permutations in A. In other words,

$$\sigma^{-1}(i_1), \cdots, \sigma^{-1}(i_m) < m_\sigma(s, t)$$

for any $\sigma \in A$.

• A monochromatic chain is indeed equivalent to a monochromatic clique.

 \Rightarrow We can apply the multicolor Ramsey theorem.

$$N(d) \leq n(2d,d) \leq R(\underbrace{d+1,d+1,\cdots,d+1}_{2^{2d-1}})$$

$$N(d) \leq n(2d,d) \leq R(\underbrace{d+1,d+1,\cdots,d+1}_{2^{2d-1}})$$

$$N(2) = 5 < n(4,2) = 13 \ll R(3,3,3,3,3,3,3,3)$$

$$N(d) \leq n(2d,d) \leq R(\underbrace{d+1,d+1,\cdots,d+1}_{2^{2d-1}})$$

$$N(2) = 5 < n(4,2) = 13 \ll R(3,3,3,3,3,3,3,3)$$

Also, we could prove that $N(d) \ge \Omega(d^{3/2})$.

$$N(d) \leq n(2d,d) \leq R(\underbrace{d+1,d+1,\cdots,d+1}_{2^{2d-1}})$$

$$N(2) = 5 < n(4,2) = 13 \ll R(3,3,3,3,3,3,3,3)$$

Also, we could prove that $N(d) \ge \Omega(d^{3/2})$.

Question

What is the real asymptotic of N(d)?

In summary, the proof is based on the codeword.

- Codeword of axis-parallel boxes can be fully understood by codewords from its projections to each axis.
- Each projected codeword consists of one increasing chain and one decreasing chain.
- As a result, if N(2) > 5, then each size 2 code $\{1, 2\}, \{1, 3\}, \dots, \{4, 5\}$ must be contained in one of the size 3 set from each chain.
- By rearranging indices, the only case that makes it possible is $\{\{1,2,4\},\{2,4,5\},\{1,3,5\},\{2,3,4\}\}.$
- Even for this case, any choice of S makes every pair of box intersects at S will have a triple intersects at S.

E., Kim and Lee, 2025, preprint

• For any d, there exists N = N(d) such that, for any point set $S \subseteq \mathbb{R}^d$ and axis-parallel boxes $B_1, \dots, B_N \subseteq \mathbb{R}^d$, if every pair of boxes intersects at S, then there is a subfamily of size d + 1 intersects at S.

E., Kim and Lee, 2025, preprint

- For any d, there exists N = N(d) such that, for any point set $S \subseteq \mathbb{R}^d$ and axis-parallel boxes $B_1, \dots, B_N \subseteq \mathbb{R}^d$, if every pair of boxes intersects at S, then there is a subfamily of size d + 1 intersects at S.
- There exists a constant C such that, for any point set S ⊆ ℝ^d and axis-parallel boxes B₁, · · · , B_{Cd} ⊆ ℝ^d, if every d-tuple of boxes intersects at S, then there is a subfamily of size d + 1 intersects at S.

The end.