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Propositional logic system

Propositional logic system

o Well-formed formulae(Syntax)
@ Valuations(Semantics)

@ Proofs(Syntactic)
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Propositional logic system

Well-formed formulae(Syntax)

@ Variables
X0, X1, "'170y 71, cee J_’ T
x, x1, x11, x111, ---
o Logical operators (Connectives)
- =, V, A, |
e Grammar
(WFF) == (Var) | [-(WFF)] | (WFF)—(WFF)] | ---
(WFF) ©:= (Var) | =(WFF) | —(WFF){WFF) | ---
@ Length
6x) = 1, £(~) = 6(g) + 1, (6 > 1) = U(g) + £(Y) +1, -

@ Reduced length for the case without unary operator

la(x;)) = 1, La(p — V) = La(d) + £2(¥), - -
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Propositional logic system

Well-formed formulae(Syntax)

@ Variables
X0, X1, "'1701 71, cee J_’ T
x, x1, x11, x111, ---
o Logical operators (Connectives)
-, =, V, A, |
@ Grammar
(WFF) == (Var) | [-(WFF)] | [(WFF)—(WFF)] | ---
(WFF) === (Var) | ~(WFF) | —(WFF)(WFF) | ---
@ Length
Ux;)) =1, 6(—p) =L(d) + 1, U(p — ) =L(¢) + (V) + 1, ---
@ Reduced length for the case without unary operator
l(xi) =1, ba(p — ) = la(@) + L2(v0), - - -
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Propositional logic system

For the case of 3 variables, —, and — with length 5.
————X type : 3
—=[X — Y] type: 9
—[=X — Y] type : 9
—[X = Y] type: 9
[-X — —Y] type: 9
[-=X — Y] type : 9
[X — —=Y] type : 9
X = [Y = Z] type : 27
[X = Y] = Z type : 27

So the total number of well-formed formulae is 111.
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Propositional logic system

Valuations(Semantics)

@ Truth table

¢ p|L T —¢ ¢—=¢ oVY ¢AY ¢|Y

F T F F T
FTFTT T T F T
. F c F T F T

T T T T F

@ Semantic consequence : AE ¢
@ Tautology : E ¢

In the propositional logic, a truth assignment on variables
determines the valuation of well-formed formulae.
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Propositional logic system

For the case of 3 variables, =, and — with length 5.
————=X type
—=[X — X] type : 3
—[=X — Y] type
—[X — Y] type
[-X — —X] type : 3
[-—=X — X] type : 3
[X = —=X] type : 3
X = [Y = X] type : 9
X —=[Y = Y] type: 9
X = [X — X] type : 3
[X = Y] = Z type
So the total number of tautologies is 4-3+2-9 — 3 = 27.
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Propositional logic system

Proofs(Syntactic)

@ Axiom schemes
K:¢—[— 9]
S:lp =W —nll = (lo =] = [¢—nll

@ Inference rules
Modus ponens : ¢, ¢ — 1 = Y
Law of excluded middle : ¢V —¢

@ Syntactic consequence : Ak ¢
@ Deduction theorem : HF ¢ — ¢ < HU {¢} - ¢

@ Theorem : Axioms F ¢
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Propositional logic system

Soundness and Completeness

@ Soundness : Every theorem is a tautology.
Most logic systems satisfy.
o Completeness : Every tautology is a theorem.

Not generally true.

Complete Hilbert deduction system

@ Variables : xg, x1, - -

@ Connectives : =, —
@ Axioms schemes :
¢ — [ — ¢
[¢ = [¥ = nl] = [[¢ = ¢] = [¢ — 7]
[~¢ = ~¢] = [¢ — ¥]
@ Inference rules : Modus ponens (¢, ¢ — ¢ F 1)

.
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Propositional logic system

Why the density of tautologies?

The density = lim The probability among length n
n—o0

Theorem-side : Automated theorem proving

Probability analysis for the random theorem generation

Tautology-side : Satisfiability problem

¢ is satisfiable < —¢ is not a tautology
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Preceding studies

Propositional logic systems with one variable

Connectives The density
_ I I I I 15
{= =} i T T 2+/2(v/221-9) + 2./442(+/221-9)
2 /24236 033819
{1} - /7773%/57% :
= 2 12—3v/2-2+/3 ~0.1
{- A} P ey 0.19360
{NOR}? ~ 0.05373
{~, V}? ~ 0.55138
{=, A, V)2 ~ 0.26081
{= A, =) ~ 0.36305
{=, A, =, &) ~ 0.33729

10On the asymptotic density of tautologies in logic of implication and
negation (M. Zaionc, 2005)

Density of tautologies in logics with one variable (L. Aszalés and T.
Herendi, 2012)
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Preceding studies

Propositional logic systems with one variable

Connectives The density
{~, =} ~ 0.42324
2 3v242v3-6 1
{I} \/W 0.33819
A2 12-3v2-2V3 1
{ v /\} 24m 0 9360
{NOR}? ~ 0.05373
{-, v}? ~ 0.55138
{= A, V)2 ~ 0.26081
{=, A, =} ~ 0.36305
=, A, =, )2 ~ 0.33729
{ }

10On the asymptotic density of tautologies in logic of implication and
negation (M. Zaionc, 2005)

Density of tautologies in logics with one variable (L. Aszalés and T.
Herendi, 2012)

11/47



Preceding studies

Propositional logic systems without unary operators

@ On the density and the structure of the Peirce-like formulae
(A. Genitrini, J. Kozik, and G. Matecki, 2008)

e Tautologies over implication with negative literals (H.
Fournier, D. Gardy, A. Genitrini, and M. Zaionc, 2010)

@ 2-Xor revisited: satisfiability and probabilities of functions (E.
de Panafieu, D. Gardy, B. Gittenberger, and M. Kuba, 2016)

.

Contains Motzkin structure

@ On the number of unary-binary tree-like structures with
restrictions on the unary height (O. Bodini, D. Gardy, B.
Gittenberger, and Z. Gofebiewski, 2018)

@ Unary profile of lambda terms with restricted De Bruijn indices
(K. Grygiel and I. Larcher, 2021)
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Main results

A method to compute the exact density of tautologies in

propositional logic systems with m variables
@ Construct a system of equations for generating functions.

@ Define well-organized sets to solve the system by divide and
conquer method.

@ Provide a way to compute the exact value.
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Main results

Practically better method to verify the exact value of the density

@ Define an s-cut operator and s-cut solution.
@ Define a shifted s-cut operator to use the iterative method.

@ Provide a computed result to show the effect of memory-time
tradeoff.
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Main results

Asymptotic behaviors of the density of tautologies as the number of

variables goes to the infinity

@ Introduce the definition of simple tautologies.
@ Define strong and weak category for well-formed formulae.

o Compute asymptotic lower bounds and an upper bound of the
density of tautologies.
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Computation of the density

Existence by Drmota-Lalley-Woods theorem

The number of length n tautologies is approximately

EyE

k>0 N

k+2

for some computable constants di's and p.

Computation of the value by Szegé lemma

For two generating functions U(z), V(z) with the common nearest
simple singularity p around 0,

e L e L 20U /T2

= m o
n—oo [z V zZ—p— V(z)=V(p) zZ—p— — / 1—
—oo [27]V(2) —p Vi=T —p~ —=2pV'(z) z/p

.
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Computation of the density

Construct a system of equations

Generating function of well-formed formulae with m variables

The generating function W(z) is defined as

W(z) = Z 249)

o (WFF)

Then, in the recursive structure
(WFF) == (Var) | [-(WFF)] | [{WFF)—(WFF)],
o (Var) corresponds to mz!
o [-(WFF)] corresponds to zW(z)
o [{(WFF) — (WFF)] corresponds to W(z)zW(z) = zW(z)?
Thus,
W(z) = mz + zW(z) + zW(z)?

If m=3, then W(z) = 3z + 32% + 1223 + 30z* + 1112° + - ...
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Computation of the density

Construct a system of equations

Define the falsity set Fy as the set of valuations make ¢ false.

Fop ={v e VA|v(¢) = [¢; v] = False = 0}

The number of valuations is 2.

The number of possible falsity sets is 22"
F-y = F(;

Foyp = Fy \ Fg

F¢\/¢ = Fd’ N Fw

F¢A¢ = F¢ U F¢

¢ is a tautology < Fy = 0.

Wa(z) == > F,—a A

18/ 47



Computation of the density

Construct a system of equations

System of equations

o If A= F,, for a variable x;,

Wa(z) =z + 2Wac(2) + > zWa(2)Wc(2).
C\B=A

@ Otherwise,

Wa(z) = 2Wac(2) + Y 2Wa(z)Wc(2).
C\B=A

Note that a system of quadratic equations is not always solvable by
radicals. For example,

X:Z2
y=x?
Z=yz+p

is equivalent to z> — z + p = 0.
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Computation of the density

Divide and conquer

Well-organized partition
For sets of valuations A, B C VA, define

Tas={Y|A\BCY CAUB).

@ Zg = {Zapg | AN B = (}} is the partition of the power set of
valuations described by equivalence relation

Y~Z&Y\B=Z\B&YUB=ZUB< YAZCB.

© Zneg ={Y°|Y €Zap}

© Ince={Y\Z|Y €Zpp Z<cIcp}
© Tance ={YNZ|Y €Ipp,Z €I}
@ Zauce ={YUZ|Y €Tap,Z €Ics}
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Computation of the density

Divide and conquer

Well-organized partition

@ Zp is isomorphic to P(B€) as a poset.

@ Za.p is a translation of P(B) as a poset.

@ Tx.p is a set-operational coset.

@ Zy.g is an order ideal.

@ 7_.p :=1Tpecp is a filter.

® Tapuy} = Zas UZaugyy.s fory € AUB.

If Iag(z) :== ZYEIA;B Wy (z),

Ing(z) = (#Fq € Tag)z + zlass(2) + > 2lcs(2)Ips(2).

C\D=A\B
CNB=DNB=0
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Computation of the density

Divide and conquer

Linear dependencies

@ /a.g(2) is a linear combination of
{ly.5(2)} U{lc.pr(2) | ccA\B, cnB'=0, |B|=|B|+1, BCB'}.
Precisely,
Ing(z) = (1)l (2) + > ccprleis (2).
@ Ia.g(2z) is a linear combination of
{I_.5(2)} U{lc.p'(2) | A\BCC, cnB'=0, |B'|=|B|+1, BCB'},
Precisely,

Ine(z) = (-1) B g(2) + 3 ceiprlcis (2).
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Linear dependencies

Computation of the density
Divide and conquer

la.g(2) is a linear combination of
{lag}U{lce |1B'=|B|+1, BC B'}.
Precisely,
IA/;B(Z) = :E/A;B(Z) + Z cc.B IC;B/(z).
o
For disjoint A, B,

las(z) = ()AHEL Y ()P e (2),

BCB/'CAUB

he(z)= (DA Y (1)),

BCB/CA¢
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Computation of the density

Divide and conquer

Solvability of the system of equations for well-organized partitions

Ing(z) = (#Fq € Tag)z + zlasig(2) + >, Zlcs(2)Ips(2)

C\D=A\B
CNB=DNB=0

is a nontrivial, at-most-quadratic equation of /4.5(z). Hence, we
can solve if for every pair of (A, B) from large B to small B.

.
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Computation of the density
Computation of the density of tautologies with m variables, = and —

L;B(Z):(#in EI—;B)Z-I-Z/@;B( )—l—z/@ B( )/ 'B( )
s(2) = Y (1)1 p(2) = (-D)FLp(2) + > (-1)E11 e (2)

BCB’ BCB’

Definitions

o m_pg:=(#F €I_),
Q@ Oop = (_1)|B|,

o IL(2) =Y pcp onl_p(2).

I_p(2) = m_.pz + zlyp(2) + zly,p(2)I_;(2)
Iye(z) = opl_5(2) + I3(2)
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Computation of the density
Computation of the density of tautologies with m variables, = and —

I-5(2) = z(m_g + I}(2)) + z(08 + 1}(2))1_.8(2) + z081_,5(2)?
Here, the discriminant is

Dg(z) == (1 — (08 + 14(2))2)? — 40z*(m_.g + I}(2)).

Szegd's lemma

lim M: im 2pl/,4;B(Z) 1_Z/p
n—oo [2|W(z)  zop= 20W/(2)\/1—2z/p

where W(z) has the nearest simple singularity at WA
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Computation of the density
Computation of the density of tautologies with m variables, = and —
Definitions

® po- 2f+1'
° ap = Il_;z(po).

(] OZE = l;(po) = ZB;B/ opapgr,

("] /BB = 2p0 Iimzﬁpg //—;B(Z)1 /1 — ITO

° ﬁ; = ZBCB' o Ba,

Dg(po) __ (
pg 14]

lim [z"]la6(2)  omB 2 BcBc(A\B) 78 BB
n—oo [27|W(2) Boa

e dg = —opg — ag) —4og(m_.g + aE).
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Computation of the density
Computation of the density of tautologies with m variables, = and —

Initial conditions

ays=+vm

Bya=1/2m++/m

2\/74—1—0‘3—0[8 v dp

= 208

4, 2Y/mtl+os—a}
e gl T Va
B B 208

Here, to write a program, we may use the binary representations.
Since B C B’ implies their corresponding integers satisfy b < b/, we

can write a code with simple for-loops for those recursive relations.
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Computation of the density

Computation of the density of tautologies with m variables, = and —

The density of tautologies with m variables, = and —

lim [2"Mp.0(2) _ 2Bcva9BBs

oo [2MW(2)  \/2m+/m

m=1| 0.42324..
m=2| 0.33213..
m =3 | 0.27003..
m=4| 0.22561..

Since every (g is a constructible number, so is the density.
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Converging speed

s-cut concepts

For a system of quadratic equations for generating functions, nth
coefficients are in

p" >0 N2
oM A 1A | 1
[18(z) o [18(z)| ~ O

€

Memory usage

For a sysetm of quadratic equations for generating functions Ay,
.-+ Ap, to compute [z"]A;(z), we need all of values [z°]A;(z) for
0 <s < nandeveryj's.

Is there any way to use same amount of informations to compute

the better estimation than E:}gg'?
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s-cut concepts

Settings and Motivation

A basic generating function

Set a generating function Y(z) satisfies
o Y(z) = f(z) + g(2)Y(2) + h(2) Y (2)?,
o degg,degh < o0,
° Y{’,—:l — % > 1,

fn
°7n—>')/

deghn—u—s—1 s

SN hTEE a1y ()~ 2h(0) 3 ek =i G,

u=0 v=s+1 k=0
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s-cut concepts

Settings and Motivation

A system of quadratic equations for generating functions

Set generating functions A;(z), -+, An(z) satisfy

Ain
° v — B,

° Ai(z) = fi(2) + 32, 8i(2)Ai(2) + 20 i hin(2)Aj(2)Ax(2),

o deg gjj, deg hjjx < oo, h|hj,

fin
o Vn —>’)/,'.

B =2 9 4 Zgij P)B;
+ Zhuk P)Br + AL (p)5)

+Z<s ik ()86
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s-cut concepts

Settings and Motivation

s-cut operator and s-cut solution

Define the s-cut operator Cs(xy,--- ,xn) = (c1,- -+, cn) as

¢ =1+ Z 8ij(0)xj

+ Z hi(p) (A (p)xk + AZ" (p)x))

and a fixed point (ﬂ§5), e ,(\f)) of Cs as an s-cut solution.
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s-cut concepts

Basic properties

With proper conditions,
° CS(/Blv"' 7/8N) — (Bl,"‘ ,BN) as S — 0OQ,
@ lims_00 (s =0,

o Bi =i+, 8i(0)B + X i hik(p)(Ai(p)Bk + Ax(p)By).

This give a relation between generating function values at the
singularity and ratios.

Natural partition

o Y(2) = Aie) +o+ Anla) 1= it

o f(z) =hf(z) + +f/v( )

o g(z) = g1j(z) + - + gn;j(z) for every j

° 2h/EZ) = hljk(z) + hlkj( z)+ -+ hyj(2) + hij(z) for every
J

v

For example, W(z) = > 4y a5 a:8(2) form a natural partition. 34,47



s-cut concepts

Shifted s-cut operator

Since the Jacobian matrix of Cs can have larger norm than 1, we
may consider a shifted

N
Co(x):=Cs(x)— o (Zx,- - 1) (IR
i=1

to use the iteration method.
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s-cut concepts

Convergence of s-cut solutions

For a natural partition system, if we have proper contraction factor
K after shifting,

1
1-K

18— 8| < 18— Cs(B)| =0

as s — Q.

.

Practically, for our density of tautologies with one variable, — and
-,
ratio at s s-cut
s=10 0.3101796... 0.4242620...
s =100 | 0.4187317... 0.4232740...
s =1000 | 0.4227880... 0.4232396...
s =10000 | 0.4231935... 0.4232386...

s-cut solutions show better convergence result to the real limit
value 0.4232385....
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Asymptotic Behaviors

For a well-formed formula ¢, v(¢) is

“¢)

(#distinct variables used in ¢) — 5

This estimator estimates the generating function value at the
singularity.

o v(¢) < 3

o v(p) < —% if ¢ is a tautology

e v(p) < —1if ¢ is an antilogy

@ The density of tautologies seems related to

mv((Tau)) o 1
mr((WFF)) —

1
m2 m
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Asymptotic Behaviors

Simple tautologies

A tautology 7 is a simple tautology if

T=¢1 [ = [ = o0 = p]--]]

where ¢; = p for some variable p.
A tautology T is a strict simple tautology if

r=plga =l o [6n > pl])

where ¢5, -+ , ¢, # p. Here, p — p is a strict simple tautology.

For a tautology ¢, v(¢) = —% if and only if ¢ is a simple tautology
that has no — and p is the only variable used in ¢ more than once. )

This definition is borrowed from Probability distribution for simple tautologies
(M. Zaionc, 2006) and Tautologies over implication with negative literals (H.

Fournier, D. Gardy, A. Genitrini, and M. Zaionc, 2010).
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Asymptotic Behaviors

Lower bounds of the density

@ Tautologies of the form p — [¢ — p] and =—(Tau) give a
lower bound
vm

A(vm+1)(2y'm + 1)

@ Strict simple tautologies give a lower bound

m 1 3 N 19 1
2m+3y/m+2)2  4m  4my/m = 16m?

@ Simple tautologies give a lower bound

m(4m + 6y/m + 3) 1 7 7
(Vmt 12@m+3ym+ 22~ m amym me Ot

1
m2/m
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Asymptotic Behaviors

If we have a set of tautologies 3, then from these, we may
recursively define induced tautologies by categorizing well-formed
formulae into

e known-tautologies T,
e known-antilogies A,
@ unknowns U.

There exists two ways to define recursive structure: strong and
weak.

For the strong category, we will use By, Tx, Ax, Us, and for the
weak category and for the weak category, we will use B*, 7%, A*,
u*.
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Asymptotic Behaviors

Strong category

¢) 7; J4* Ui 7; J4* Uy 7; J4* Uy
6 T. Ao U U U,

T.(z) = Bi(2) + zA(2) + 2W(2) T (2),
Ui(2) = mz — B(2) + zU.(2) + z[W(2)Us(2) + Au(2)? + Us(2)Ac(2)],
Ai(2) = 2T (2) + zT.(2) AL (2).

Here, A, = 1f7z—f,.*, so by substituting this in
T, = By + zA, + zT,, W, we can solve the equation easly since it

gives a quadratic equation.
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Asymptotic Behaviors

Weak category

o — Y T* A T U |u* T U*

T7(2) = B*(2) + 2A%(2) + 2[W(2) T"(2) + A*(2)W(z) — A*(2) T"(2)];
U*(z) = mz — B*(z) + zU*(z) + zU* (z) W(z),
A*(z) = zT*(2) + zT*(2)A*(2).

After we check the analyticity condition, we can find a series
solution for
TR

noe [27]W(z)

i s L
where the series base is NG
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Asymptotic Behaviors

Lower bounds of the density
@ The strong-categorized tautologies from simple tautolgies give
a lower bound
1 7 31 1
0
+0( e

@ The weak-categorized tautologies from simple tautolgies give a
lower bound

m 2m\ﬁ+4m2

)

1 5 + 29
m 2my/m 8m?

+ O( )

1
m2y/m
@ The weak-categorized tautologies from simple tautolgies

include second kind simple tautology concept give a lower

bound
1 7 5

~ b2 O
m  4my/m = 4m? m2y/m
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Asymptotic Behaviors

Upper bound of the density

By counting false formulae, we have an upper bound of the density
of tautologies as

Vvm VE+1 3 7 1

+ +0
2 2\/5m+6— 25 10v5m  100v5m (mﬁ)

Asymptotic results

The density of tautologies satisfy

1 1 5+1 1
APV SN

)S_z\f O(\ﬁ

where the lower bound is conjectured as tight.

)

44 /47



Results and Further studies

The density of tautologies with m variables, —, and —

m=1| 0.42324..
m=2 | 0.33213..
m =3 | 0.27003..
m=4 | 0.22561..

Is it possible to compute the exact number for m > 5 practically?

The better estimation by s-cut for the density of tautologies with

one variable, - and —

0.4232385... ratio at s s-cut
s=10 0.3101796... 0.4242620...
s =100 0.4187317... 0.4232740...
s = 1000 0.4227880... 0.423239%6...
s = 10000 | 0.4231935... 0.4232386...

V.

Is it possible to compute how s-cut solution is better quantitatively? w547



Results and Further studies

Asymptotic bounds for the density of tautologies as the number of

variables m — oo

ot e o

Is it possible to reduce the upper bound to = + O(T)

+ O(—=)
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Thank you.
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